Decomposition of Multicomponent Micro-Doppler Signals Based on HHT-AMD
Abstract
:1. Introduction
2. Micro-Doppler Signal Model
3. Decomposition Method Based on HHT-AMD
3.1. Hilbert-Huang Transform (HHT)
3.2. Analytical Mode Decomposition (AMD)
3.3. AMD Signal Extraction Algorithm
3.4. Signal Decomposition Algorithm
4. Simulation Studies and Performance Evaluation
4.1. Example
4.2. Comparison with the Conventional HHT
4.3. Influence of the SNR
4.4. Selection of the Dimidiate Frequency and Searching Step Length
5. Experimental Data
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, V.C.; Li, F.; Ho, S.; Wechsler, H. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Narayanan, R.M.; Zenaldin, M. Radar micro-Doppler signatures of various human activities. IET Radar Sonar Navig. 2015, 9, 1205–1215. [Google Scholar] [CrossRef]
- Niu, J.; Zhu, Y.; Liu, Y.; Li, X.; Kuang, G. Radar micro-motion feature extraction of cone target based on Hilbert-Huang transform. In Proceedings of the 2012 IEEE International Conference on Information Science and Technology, Wuhan, China, 23–25 March 2012. [Google Scholar]
- Chen, H.Y. Research on Radar Signature Extraction from Target with Micro-Motions. Ph.D. Thesis, National University of Defense Technology, Hunan, China, 2006. [Google Scholar]
- Zediker, M.S.; Rice, R.R.; Hollister, J.H. Method for Extending Range and Sensitivity of a Fiber Optic Micro-Doppler System and Apparatus Therefore. U.S. Patent 6,847,817, 8 December 1998. [Google Scholar]
- Chen, V.C. Analysis of radar micro-Doppler with time-frequency transform. In Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, PA, USA, 14–16 August 2000. [Google Scholar]
- Thayaparan, T. Micro-Doppler Radar Signatures for Intelligent Target Recognition; DRDC Ottawa TM 2004-170; Defence R&D Canada: Ottawa, ON, Canada, 2004. [Google Scholar]
- Yang, L.; Chen, G.; Li, G. Classification of Personnel Targets with Baggage Using Dual-band Radar. Remote Sens. 2017, 9, 594. [Google Scholar] [CrossRef]
- Lai, C.; Ruan, Q.; Narayanan, R.M. Hilbert-Huang transform (HHT) processing of through-wall noise radar data for human activity characterization. In Proceedings of the 2007 IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA, 11–13 April 2007. [Google Scholar]
- Walther, J.; Koch, E. Flow Measurement by Lateral Resonant Doppler Optical Coherence Tomography in the Spectral Domain. Appl. Sci. 2017, 7, 382. [Google Scholar] [CrossRef]
- Chen, V.C.; Ling, H. Time Frequency Transforms for Radar Imaging and Signal Analysis; Artech House: Boston, MA, USA, 2008. [Google Scholar]
- Kay, S.M.; Marple, S.L. Spectrum Analysis: A Modern Perspective. Proc. IEEE 1981, 69, 1380–1419. [Google Scholar] [CrossRef]
- Cohen, L. Time-frequency distributions—A review. Proc. IEEE 1989, 77, 941–981. [Google Scholar] [CrossRef]
- Cohen, L. Time-Frequency Analysis; Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Lampropoulos, G.; Thayaparan, T.; Xie, N. Fusion of time-frequency distributions and applications to radar signals. J. Electron. Imaging 2006, 15, 1–17. [Google Scholar]
- Li, G.; Pramod, K.V. Micro-Doppler Parameter Estimation via Parametric Sparse Representation and Pruned Orthogonal Matching Pursuit. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 12, 4937–4948. [Google Scholar] [CrossRef]
- Huang, N.E. Hilbert-Huang Transform and Its Applications; World Scientific: Singapore, 2014. [Google Scholar]
- Cai, C.; Liu, W.; Fu, J.; Lu, L. Empirical mode decomposition of micro-Doppler signature. In Proceedings of the 2005 IEEE International Radar Conference, Arlington, VA, USA, 9–12 May 2005. [Google Scholar]
- Fairchild, D.P.; Narayanan, R.M. Classification of human motions using empirical mode decomposition of human micro-Doppler signatures. IET Radar Sonar Navig. 2014, 8, 425–434. [Google Scholar] [CrossRef]
- Boulic, R.; Thalmann, N.M.; Thalmann, D. A global human walking model with real-time kinematic personification. Vis. Comput. 1990, 6, 344–358. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46, 1–23. [Google Scholar] [CrossRef]
- Shi, P.; Su, C.; Han, D. Close spaced frequency component detection method of non-stationary signal based on AMD and HHT. Chin. J. Sci. Instrum. 2014, 35, 2817–2825. [Google Scholar]
- Chen, V.C. Doppler signatures of radar backscattering from objects with micro-motions. IET Signal Process. 2008, 2, 291–300. [Google Scholar] [CrossRef]
- Chen, V.C.; Li, F.; Ho, S.; Wechsler, H. Analysis of micro-Doppler signatures. IEE Proc. Radar Sonar Navig. 2003, 150, 271–276. [Google Scholar] [CrossRef]
- Li, W.; Xiong, B.; Kuang, G. Target classification and recognition based on micro-Doppler radar signatures. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS—FALL), Singapore, 19–22 November 2017. [Google Scholar]
- Huang, N.; Shen, Z.; Long, S.; Wu, M.; Shih, H.; Zheng, N.; Yen, N.; Tung, C.; Liu, H. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Niu, J.; Liu, Y.; Jiang, W.; Li, X.; Kuang, G. Weighted average frequency algorithm for Hilbert–Huang spectrum and its application to micro-Doppler estimation. IET Radar Sonar Navig. 2012, 6, 595–602. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components. Mech. Syst. Sig. Process. 2012, 28, 258–279. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhang, Z. Estimation of micro-motion parameters based on micro-Doppler. IET Signal Process 2010, 4, 213–217. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Q.; Qiu, C.; Liang, X.; Li, K. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2087–2098. [Google Scholar]
- Bai, X. Imaging of Micro motion Targets with Rotating Parts Based on Empirical-Mode Decomposition. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3514–3523. [Google Scholar] [CrossRef]
- Sparr, T.; Krane, B. Micro-Doppler analysis of vibrating targets in SAR. IEE Proc. Radar Sonar Navig. 2003, 150, 277–283. [Google Scholar] [CrossRef]
Trial | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Search range | 5~50 | 10~40 | 15~30 | 17~28 | 19~26 |
Dimidiate frequency | 25 | 25 | 24 | 23 | 22 |
Search step | 5 | 4 | 3 | 2 | 1 |
Decomposed components | 25 | 23 | 22, 26 | 21, 24 | 20, 25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Kuang, G.; Xiong, B. Decomposition of Multicomponent Micro-Doppler Signals Based on HHT-AMD. Appl. Sci. 2018, 8, 1801. https://doi.org/10.3390/app8101801
Li W, Kuang G, Xiong B. Decomposition of Multicomponent Micro-Doppler Signals Based on HHT-AMD. Applied Sciences. 2018; 8(10):1801. https://doi.org/10.3390/app8101801
Chicago/Turabian StyleLi, Wenchao, Gangyao Kuang, and Boli Xiong. 2018. "Decomposition of Multicomponent Micro-Doppler Signals Based on HHT-AMD" Applied Sciences 8, no. 10: 1801. https://doi.org/10.3390/app8101801
APA StyleLi, W., Kuang, G., & Xiong, B. (2018). Decomposition of Multicomponent Micro-Doppler Signals Based on HHT-AMD. Applied Sciences, 8(10), 1801. https://doi.org/10.3390/app8101801