Stochastic and Higher-Order Effects on Exploding Pulses
Abstract
1. Introduction
2. Influence of Additive and Multiplicative Noise on Exploding Dissipative Solitons
2.1. Stochastic Equations
2.2. Numerical Method
2.3. Results
3. Exploding Dissipative Solitons and Higher-Order Effects
3.1. Complex Ginzburg-Landau Equation and Short Pulses
3.2. Results
4. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cundiff, S.; Soto-Crespo, J.; Akhmediev, N. Experimental Evidence for Soliton Explosions. Phys. Rev. Lett. 2002, 88, 073903. [Google Scholar] [CrossRef] [PubMed]
- Runge, A.F.; Broderick, N.G.; Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2015, 2, 36–39. [Google Scholar] [CrossRef]
- Liu, M.; Luo, A.P.; Yan, Y.R.; Hu, S.; Liu, Y.C.; Cui, H.; Luo, Z.C.; Xu, W.C. Successive soliton explosions in an ultrafast fiber laser. Opt. Lett. 2016, 41, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Rosso, O.A.; Larrondo, H.A. Localized Structures in Physics and Chemistry. Eur. Phys. J. Spec. Top. 2014, 223, 1–7. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A. Dissipative Solitons; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kolodner, P.; Bensimon, D.; Surko, C. Traveling-wave convection in an annulus. Phys. Rev. Lett. 1988, 60, 1723. [Google Scholar] [CrossRef] [PubMed]
- Niemela, J.J.; Ahlers, G.; Cannell, D.S. Localized traveling-wave states in binary-fluid convection. Phys. Rev. Lett. 1990, 64, 1365. [Google Scholar] [CrossRef] [PubMed]
- Kolodner, P. Collisions between pulses of traveling-wave convection. Phys. Rev. A 1991, 44, 6466–6479. [Google Scholar] [CrossRef] [PubMed]
- Rotermund, H.; Jakubith, S.; Von Oertzen, A.; Ertl, G. Solitons in a surface reaction. Phys. Rev. Lett. 1991, 66, 3083. [Google Scholar] [CrossRef] [PubMed]
- Umbanhowar, P.B.; Melo, F.; Swinney, H.L. Localized excitations in a vertically vibrated granular layer. Nature 1996, 382, 793. [Google Scholar] [CrossRef]
- Taranenko, V.; Staliunas, K.; Weiss, C. Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator. Phys. Rev. A 1997, 56, 1582. [Google Scholar] [CrossRef]
- Lioubashevski, O.; Hamiel, Y.; Agnon, A.; Reches, Z.; Fineberg, J. Oscillons and propagating solitary waves in a vertically vibrated colloidal suspension. Phys. Rev. Lett. 1999, 83, 3190. [Google Scholar] [CrossRef]
- Ultanir, E.A.; Stegeman, G.I.; Michaelis, D.; Lange, C.H.; Lederer, F. Stable dissipative solitons in semiconductor optical amplifiers. Phys. Rev. Lett. 2003, 90, 253903. [Google Scholar] [CrossRef] [PubMed]
- Merkt, F.S.; Deegan, R.D.; Goldman, D.I.; Rericha, E.C.; Swinney, H.L. Persistent holes in a fluid. Phys. Rev. Lett. 2004, 92, 184501. [Google Scholar] [CrossRef] [PubMed]
- Ebata, H.; Sano, M. Self-replicating holes in a vertically vibrated dense suspension. Phys. Rev. Lett. 2011, 107, 088301. [Google Scholar] [CrossRef] [PubMed]
- Soto-Crespo, J.M.; Akhmediev, N.; Ankiewicz, A. Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 2000, 85, 2937–2940. [Google Scholar] [CrossRef] [PubMed]
- Akhmediev, N.; Soto-Crespo, J.; Town, G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach. Phys. Rev. E 2001, 63, 056602. [Google Scholar] [CrossRef] [PubMed]
- Brand, H.R.; Lomdahl, P.S.; Newell, A.C. Evolution of the order parameter in situations with broken rotational symmetry. Phys. Lett. A 1986, 118, 67–73. [Google Scholar] [CrossRef]
- Brand, H.R.; Lomdahl, P.S.; Newell, A.C. Benjamin-Feir turbulence in convective binary fluid mixtures. Physica D 1986, 23, 345–361. [Google Scholar] [CrossRef]
- Thual, O.; Fauve, S. Localized structures generated by subcritical instabilities. J. Phys. France 1988, 49, 1829–1833. [Google Scholar] [CrossRef]
- Haus, H.A. Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 1975, 46, 3049–3058. [Google Scholar] [CrossRef]
- Belanger, P. Coupled-cavity mode locking: A nonlinear model. JOSA B 1991, 8, 2077–2081. [Google Scholar] [CrossRef]
- Weiss, C. Spatio-temporal structures. Part II. Vortices and defects in lasers. Phys. Rep. 1992, 219, 311–338. [Google Scholar] [CrossRef]
- Mollenauer, L.F.; Gordon, J.P.; Evangelides, S.G. The sliding-frequency guiding filter: An improved form of soliton jitter control. Opt. Lett. 1992, 17, 1575–1577. [Google Scholar] [CrossRef] [PubMed]
- Firth, W.; Scroggie, A. Optical bullet holes: Robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 1996, 76, 1623. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Brand, H.R. Transition from modulated to exploding dissipative solitons: Hysteresis, dynamics, and analytic aspects. Phys. Rev. E 2010, 82, 026203. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Cartes, C.; Cisternas, J.; Brand, H.R. Exploding dissipative solitons: The analog of the Ruelle-Takens route for spatially localized solutions. Phys. Rev. E 2011, 83, 056214. [Google Scholar] [CrossRef] [PubMed]
- Cartes, C.; Descalzi, O.; Brand, H.R. Noise can induce explosions for dissipative solitons. Phys. Rev. E 2012, 85, 015205. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Cartes, C.; Brand, H.R. Noisy localized structures induced by large noise. Phys. Rev. E 2015, 91, 020901. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Cartes, C.; Brand, H.R. Multiplicative noise can lead to the collapse of dissipative solitons. Phys. Rev. E 2016, 94, 012219. [Google Scholar] [CrossRef] [PubMed]
- Van Kampen, N. Stochastic Processes in Physics and Chemistry; North-Holland Personal Library; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Risken, H.; Haken, H. The Fokker-Planck Equation: Methods of Solution and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Tsimring, L.S. Noise in biology. Rep. Prog. Phys. 2014, 77, 026601. [Google Scholar] [CrossRef] [PubMed]
- Graham, R. Hydrodynamic fluctuations near the convection instability. Phys. Rev. A 1974, 10, 1762. [Google Scholar] [CrossRef]
- Schenzle, A.; Brand, H.R. Multiplicative stochastic processes in statistical physics. Phys. Rev. A 1979, 20, 1628. [Google Scholar] [CrossRef]
- Brand, H.R.; Kai, S.; Wakabayashi, S. External noise can suppress the onset of spatial turbulence. Phys. Rev. Lett. 1985, 54, 555. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G. Nonlinear Fiber Optics; Optics and Photonics Series; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Cartes, C.; Descalzi, O. Periodic exploding dissipative solitons. Phys. Rev. A 2016, 93, 031801. [Google Scholar] [CrossRef]
- Deissler, R.; Brand, H.R. The effect of nonlinear gradient terms on localized states near a weakly inverted bifurcation. Phys. Lett. A 1990, 146, 252. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Descalzi, O.; Cartes, C. Stochastic and Higher-Order Effects on Exploding Pulses. Appl. Sci. 2017, 7, 887. https://doi.org/10.3390/app7090887
Descalzi O, Cartes C. Stochastic and Higher-Order Effects on Exploding Pulses. Applied Sciences. 2017; 7(9):887. https://doi.org/10.3390/app7090887
Chicago/Turabian StyleDescalzi, Orazio, and Carlos Cartes. 2017. "Stochastic and Higher-Order Effects on Exploding Pulses" Applied Sciences 7, no. 9: 887. https://doi.org/10.3390/app7090887
APA StyleDescalzi, O., & Cartes, C. (2017). Stochastic and Higher-Order Effects on Exploding Pulses. Applied Sciences, 7(9), 887. https://doi.org/10.3390/app7090887