Comparison of Basic Notch Filters for Semiconductor Optical Amplifier Pattern Effect Mitigation
Abstract
1. Introduction
2. Basic Optical Notch Filters’ Configurations
3. Optical Notch Filter Requirements for SOA Pattern Effect Suppression
4. ODI vs. MRR Comparison Rationale
5. ODI vs. MRR Comparison: Results and Discussion
6. ODI vs. MRR Qualitative Comparison
- (a)
- FSR:
- (b)
- Detuning:
- (c)
- PNCR:
- (d)
- Temperature sensitivity:
- (e)
- Integration potential:
- (f)
- Multi-wavelength operation:
- (g)
- Tunability:
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Zimmerman, D.R.; Spiekman, L.H. Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications. J. Lightwave Technol. 2004, 22, 63–70. [Google Scholar] [CrossRef]
- Bonk, R.; Schmuck, H.; Poehlmann, W.; Pfeiffer, T. Beneficial OLT transmitter and receiver concepts for NG-PON2 using semiconductor optical amplifiers. J. Opt. Commun. Netw. 2015, 7, A467–A473. [Google Scholar] [CrossRef]
- Connelly, M.J. Semiconductor Optical Amplifiers; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Chapter 6. [Google Scholar]
- Mørk, J.; Nielsen, M.L.; Berg, T.W. The dynamics of semiconductor optical amplifiers: Modeling and applications. Opt. Photonics News 2003, 14, 42–48. [Google Scholar] [CrossRef]
- Kamelian. Applications Note No. 0001 “Semiconductor Optical Amplifiers (SOAs) as Power Boosters” and No. 0002 “Semiconductor Optical Amplifiers (SOAs) as Pre-Amplifiers”. Available online: http://www.kamelian.com (accessed on 12 July 2017).
- Spiekman, L.H.; Wiesenfeld, J.; Gnauck, A.; Garrett, L.; Van Den Hoven, G.; Van Dongen, T.; Sander-Jochem, M.; Binsma, J. Transmission of 8 DWDM channels at 20 Gb/s over 160 Km of standard fiber using a cascade of semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 2000, 12, 717–719. [Google Scholar] [CrossRef]
- Udvary, E.; Berceli, T. Semiconductor optical amplifier for detection function in radio over fiber systems. J. Lightwave Technol. 2008, 26, 2563–2570. [Google Scholar] [CrossRef]
- Porto, S.; Antony, C.; Ossieur, P.; Townsend, P.D. An upstream reach-extender for 10 Gb/s PON applications based on an optimized semiconductor amplifier cascade. Opt. Express 2012, 20, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Yiannopoulos, K.; Sagias, N.C.; Boucouvalas, A.C. Fade mitigation based on semiconductor optical amplifiers. J. Lightwave Technol. 2013, 31, 3621–3630. [Google Scholar] [CrossRef]
- Miao, W.; Luo, J.; Di Lucente, S.; Dorren, H.; Calabretta, N. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system. Opt. Express 2014, 22, 2465–2472. [Google Scholar] [CrossRef]
- Schmuck, H.; Bonk, R.; Poehlmann, W.; Haslach, C.; Kuebart, W.; Karnick, D.; Meyer, J.; Fritzsche, D.; Weis, E.; Becker, J.; et al. Demonstration of an SOA-assisted open metro-access infrastructure for heterogeneous services. Opt. Express 2014, 22, 737–748. [Google Scholar] [CrossRef]
- Pato, S.V.; Meleiro, R.; Fonseca, D.; Andre, P.; Monteiro, P.; Silva, H. All-optical burst-mode power equalizer based on cascaded SOAs for 10-Gb/s EPONs. IEEE Photonics Technol. Lett. 2008, 20, 2078–2080. [Google Scholar] [CrossRef]
- Manning, R.; Ellis, A.; Poustie, A.; Blow, K. Semiconductor laser amplifiers for ultrafast all-optical signal processing. J. Opt. Soc. Am. B 1997, 14, 3204–3216. [Google Scholar] [CrossRef]
- Zoiros, K.; Chasioti, R.; Koukourlis, C.; Houbavlis, T. On the output characteristics of a semiconductor optical amplifier driven by an ultrafast optical time division multiplexing pulse train. Optik 2007, 118, 134–146. [Google Scholar] [CrossRef]
- Rizou, Z.V.; Zoiros, K.E.; Hatziefremidis, A.; Connelly, M.J. Design analysis and performance optimization of a Lyot filter for semiconductor optical amplifier pattern effect suppression. J. Sel. Top. Quantum Electron. 2013, 19, 1–9. [Google Scholar] [CrossRef]
- Bonk, R.; Huber, G.; Vallaitis, T.; Koenig, S.; Schmogrow, R.; Hillerkuss, D.; Brenot, R.; Lelarge, F.; Duan, G.H.; Sygletos, S.; et al. Linear semiconductor optical amplifiers for amplification of advanced modulation formats. Opt. Express 2012, 20, 9657–9672. [Google Scholar] [CrossRef] [PubMed]
- Bogoni, A.; Potì, L.; Ghelfi, P.; Scaffardi, M.; Porzi, C.; Ponzini, F.; Meloni, G.; Berrettini, G.; Malacarne, A.; Prati, G. OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 2007, 13, 1–12. [Google Scholar] [CrossRef]
- Winzer, P.J.; Essiambre, R.J. Advanced modulation formats for high-capacity optical transport networks. J. Lightwave Technol. 2006, 24, 4711–4728. [Google Scholar] [CrossRef]
- Mecozzi, A.; Mørk, J. Saturation induced by picosecond pulses in semiconductor optical amplifiers. J. Opt. Soc. Am. B 1997, 14, 761–770. [Google Scholar] [CrossRef]
- Inoue, K. Optical filtering technique to suppress waveform distortion induced in a gain-saturated semiconductor optical amplifier. Electron. Lett. 1997, 33, 885–886. [Google Scholar] [CrossRef]
- Watanabe, T.; Yasaka, H.; Sakaida, N.; Koga, M. Waveform shaping of chirp-controlled signal by semiconductor optical amplifier using Mach-Zehnder frequency discriminator. IEEE Photonics Technol. Lett. 1998, 10, 1422–1424. [Google Scholar] [CrossRef]
- Yu, J.; Jeppesen, P. Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter. J. Lightwave Technol. 2001, 19, 1316–1325. [Google Scholar]
- Wong, C.; Tsang, H. Reduction of bit-pattern dependent errors from a semiconductor optical amplifier using an optical delay interferometer. Opt. Commun. 2004, 232, 245–249. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, X.; Wang, F.; Hong, W.; Huang, D. Experimental study of SOA-based NRZ-to-PRZ conversion and distortion elimination of amplified NRZ signal using spectral filtering. Opt. Commun. 2008, 281, 5618–5624. [Google Scholar] [CrossRef]
- Hussain, K.; Pradhan, R.; Datta, P. Patterning characteristics and its alleviation in high bit-rate amplification of bulk semiconductor optical amplifier. Opt. Quantum Electron. 2010, 42, 29–43. [Google Scholar] [CrossRef]
- Agrawal, G.P.; Olsson, N.A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 1989, 25, 2297–2306. [Google Scholar] [CrossRef]
- Wang, J. Pattern Effect Mitigation Techniques for All-Optical Wavelength Converters Based on SOAs. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2008. [Google Scholar]
- Zoiros, K.E.; O’Riordan, C.; Connelly, M.J. Semiconductor optical amplifier pattern effect suppression using a birefringent fiber loop. IEEE Photonics Technol. Lett. 2010, 22, 221–223. [Google Scholar] [CrossRef]
- Rizou, Z.; Zoiros, K.; Hatziefremidis, A.; Connelly, M. Performance tolerance analysis of birefringent fiber loop for semiconductor optical amplifier pattern effect suppression. Appl. Phys. B Lasers Opt. 2015, 119, 247–257. [Google Scholar] [CrossRef]
- Zoiros, K.E.; Siarkos, T.; Koukourlis, C.S. Theoretical analysis of pattern effect suppression in semiconductor optical amplifier utilizing optical delay interferometer. Opt. Commun. 2008, 281, 3648–3657. [Google Scholar] [CrossRef]
- Zoiros, K.E.; Rizou, Z.V.; Connelly, M.J. On the compensation of chirp induced from semiconductor optical amplifier on RZ data using optical delay interferometer. Opt. Commun. 2011, 284, 3539–3547. [Google Scholar] [CrossRef]
- Zoiros, K.E.; Janer, C.L.; Connelly, M.J. Semiconductor optical amplifier pattern effect suppression for return-to-zero data using an optical delay interferometer. Opt. Eng. 2010, 49, 1–4. [Google Scholar]
- Rizou, Z.; Zoiros, K.; Hatziefremidis, A. Semiconductor optical amplifier pattern effect suppression with passive single microring resonator-based notch filter. Opt. Commun. 2014, 329, 206–213. [Google Scholar] [CrossRef]
- Katz, O.; Malka, D. Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides. Photonics Nanostruct. 2017, 25, 9–13. [Google Scholar] [CrossRef]
- Malka, D.; Peled, A. Power splitting of 1 × 16 in multicore photonic crystal fibers. Appl. Surf. Sci. 2017, 417, 34–39. [Google Scholar] [CrossRef]
- Ben Zaken, B.B.; Zanzury, T.; Malka, D. An 8-channel wavelength MMI demultiplexer in slot waveguide structures. Materials 2016, 9, 881. [Google Scholar] [CrossRef]
- Malka, D.; Sintov, Y.; Zalevsky, Z. Design of a 1 × 4 silicon-alumina wavelength demultiplexer based on multimode interference in slot waveguide structures. J. Opt. 2015, 17, 125702. [Google Scholar] [CrossRef]
- Malka, D.; Sintov, Y.; Zalevsky, Z. Fiber-laser monolithic coherent beam combiner based on multicore photonic crystal fiber. Opt. Eng. 2015, 54, 011007. [Google Scholar] [CrossRef]
- Wong, C.; Tsang, H. Filtering directly modulated laser diode pulses with a Mach-Zehnder optical delay interferometer. Electron. Lett. 2004, 40, 938–940. [Google Scholar] [CrossRef]
- Rabus, D.G. Integrated Ring Resonators: The Compendium; Spring: Berlin, Germany, 2007. [Google Scholar]
- Sumetsky, M. Optimization of resonant optical sensors. Opt. Express 2007, 15, 17449–17457. [Google Scholar] [CrossRef] [PubMed]
- Ruege, A.C. Electro-Optic Ring Resonators in Integrated Optics for Miniature Electric Field Sensors. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2001. [Google Scholar]
- Nielsen, M.L.; Mørk, J. Bandwidth enhancement of SOA-based switches using optical filtering: Theory and experimental verification. Opt. Express 2006, 14, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Udvary, E. Off-set filtering effect in SOA based optical access network. Radioengineering 2016, 25, 26–33. [Google Scholar] [CrossRef]
- Yu, H.Y.; Mahgerefteh, D.; Cho, P.S.; Goldhar, J. Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating. J. Lightwave Technol. 1999, 17, 308–315. [Google Scholar]
- Nielsen, M.L.; Mørk, J.; Suzuki, R.; Sakaguchi, J.; Ueno, Y. Theoretical and experimental study of fundamental differences in the noise suppression of high-speed SOA-based all-optical switches. Opt. Express 2005, 13, 5080–5086. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.L. Experimental and Theoretical Investigation of Semiconductor Optical Amplifier (SOA) Based All-Optical Switches. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2004. [Google Scholar]
- Rizou, Z.V.; Zoiros, K.E. Performance analysis and improvement of semiconductor optical amplifier direct modulation with assistance of microring resonator notch filter. Opt. Quantum Electron. 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Vardakas, J.S.; Zoiros, K.E. Performance investigation of all-optical clock recovery circuit based on Fabry-Pérot filter and semiconductor optical amplifier assisted Sagnac switch. Opt. Eng. 2007, 46, 1–21. [Google Scholar]
- Gutiérrez-Castrejón, R.; Filios, A. Pattern-effect reduction using a cross-gain modulated holding beam in semiconductor optical in-line amplifier. J. Lightwave Technol. 2006, 24, 4912–4917. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, Y.; Dong, J.; Zheng, A.; Liao, S.; Zhou, H.; Wu, Z.; Xia, J.; Zhang, X. Operation bandwidth optimization of photonic differentiators. Opt. Express 2015, 23, 18925–18936. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.P. Fiber-Optic Communication Systems, 3rd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Bonk, R.; Vallaitis, T.; Guetlein, J.; Meuer, C.; Schmeckebier, H.; Bimberg, D.; Koos, C.; Freude, W.; Leuthold, J. The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications. IEEE Photonics J. 2011, 3, 1039–1053. [Google Scholar] [CrossRef]
- Vacondio, F.; Ghazisaeidi, A.; Bononi, A.; Rusch, L.A. Low-complexity compensation of SOA nonlinearity for single-channel PSK and OOK. J. Lightwave Technol. 2010, 28, 277–288. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Mørk, J. Investigation of patterning effects in ultrafast SOA-based optical switches. IEEE J. Quantum Electron. 2010, 46, 87–94. [Google Scholar] [CrossRef]
- MacWilliams, F.J.; Sloane, N.J. Pseudo-random sequences and arrays. Proc. IEEE 1976, 64, 1715–1729. [Google Scholar] [CrossRef]
- Singh, S.; Kaler, R. Transmission performance of 20 × 10 Gb/s WDM signals using cascaded optimized SOAs with OOK and DPSK modulation formats. Opt. Commun. 2006, 266, 100–110. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Doerr, C.R.; Chandrasekhar, S.; Stulz, L.W. Reduction of nonlinear distortion from a semiconductor optical amplifier using an optical equalizer. IEEE Photonics Technol. Lett. 2004, 16, 921–923. [Google Scholar] [CrossRef]
- Niehusmann, J.; Vörckel, A.; Bolivar, P.H.; Wahlbrink, T.; Henschel, W.; Kurz, H. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 2004, 29, 2861–2863. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Imai, T.; Taguchi, K.; Suzuki, K.I.; Ishii, H.; Yoshimoto, N. Field trial of 100-km reach symmetric-rate 10 G-EPON system using automatic level controlled burst-mode SOAs. J. Lightwave Technol. 2013, 31, 634–640. [Google Scholar] [CrossRef]
- Porzi, C.; Kado, Y.; Shimizu, S.; Maruta, A.; Wada, N.; Bogoni, A.; Kitayama, K.I. Simple uplink SOA pattern effects compensation for reach-extended 10 G-EPONs. IEEE Photonics. Technol. Lett. 2014, 26, 165–168. [Google Scholar] [CrossRef]
- Kim, H. 10-Gb/s operation of RSOA using a delay interferometer. IEEE Photonics Technol. Lett. 2010, 22, 1379–1381. [Google Scholar] [CrossRef]
- Elrefaie, A.F.; Wagner, R.E.; Atlas, D.; Daut, D. Chromatic dispersion limitations in coherent light wave transmission systems. J. Lightwave Technol. 1988, 6, 704–709. [Google Scholar] [CrossRef]
- Forghieri, F.; Prucnal, P.; Tkach, R.; Chraplyvy, A.R. RZ versus NRZ in nonlinear WDM systems. IEEE Photonics Technol. Lett. 1997, 9, 1035–1037. [Google Scholar] [CrossRef]
- Levaufre, G.; Le Liepvre, A.; Jany, C.; Accard, A.; Kaspar, P.; Brenot, R.; Make, D.; Lelarge, F.; Olivier, S.; Malhouitre, S.; et al. Hybrid III-V/silicon tunable laser directly modulated at 10 Gbit/s for short reach/access networks. In Proceedings of the European Conference on Optical Communication, Cannes, France, 21–25 September 2014. [Google Scholar]
- Dubé-Demers, R.; LaRochelle, S.; Shi, W. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica 2016, 3, 622–627. [Google Scholar] [CrossRef]
- Gutiérrez-Castrejón, R.; Occhi, L.; Schares, L.; Guekos, G. Recovery dynamics of cross-modulated beam phase in semiconductor amplifiers and applications to all-optical signal processing. Opt. Commun. 2001, 195, 167–177. [Google Scholar] [CrossRef]
- Gayen, D.K.; Chattopadhyay, T.; Zoiros, K.E. All-optical D flip-flop using single quantum-dot semiconductor optical amplifier assisted Mach-Zehnder interferometer. J. Comput. Electron. 2015, 14, 129–138. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Song, M.; Beausoleil, R.G.; Willner, A.E. Data quality dependencies in microring-based DPSK transmitter and receiver. Opt. Express 2008, 16, 5739–5745. [Google Scholar] [CrossRef] [PubMed]
- Tazawa, H.; Kuo, Y.H.; Dunayevskiy, I.; Luo, J.; Jen, A.K.Y.; Fetterman, H.R.; Steier, W.H. Ring resonator-based electrooptic polymer traveling-wave modulator. J. Lightwave Technol. 2006, 24, 3514–3519. [Google Scholar] [CrossRef]
- Ye, T.; Cai, X. On power consumption of silicon-microring-based optical modulators. J. Lightwave Technol. 2010, 28, 1615–1623. [Google Scholar]
- Madsen, C.K.; Zhao, J.H. Optical Filter Design and Analysis: A Signal Processing Approach; John Wiley & Sons, Inc.: New York, NY, USA, 1999; pp. 1–5. [Google Scholar]
- Malka, D.; Cohen, M.; Turkiewicz, J.; Zalevsky, Z. Optical micro-multi-racetrack resonator filter based on SOI waveguides. Photonics Nanostruct. 2015, 16, 16–23. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, H.; Fu, X.; Yao, M. Spectral encoded photonic analog-to-digital converter based on cascaded unbalanced MZMs. IEEE Photonics Technol. Lett. 2009, 21, 224–226. [Google Scholar]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Kim, T.Y.; Hanawa, M.; Kim, S.J.; Hann, S.; Kim, Y.H.; Han, W.T.; Park, C.S. Optical delay interferometer based on phase shifted fiber Bragg grating with optically controllable phase shifter. Opt. Express 2006, 14, 4250–4255. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Worms, K.; Maestle, R.; Hillerkuss, D.; Freude, W.; Leuthold, J. Free-space optical delay interferometer with tunable delay and phase. Opt. Express 2011, 19, 11654–11666. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Zhang, M.; Chen, X.; Zhang, Z.; Liu, M.; Liu, L.; Huang, S. Improved 10-Gbps uplink transmission in WDM-PON with RSOA-based colorless ONUs and MZI-based equalizers. Opt. Laser Technol. 2013, 51, 90–97. [Google Scholar] [CrossRef]
- Luo, Z.C.; Cao, W.J.; Luo, A.P.; Xu, W.C. Polarization-independent, multifunctional all-fiber comb filter using variable ratio coupler-based Mach-Zehnder interferometer. J. Lightwave Technol. 2012, 30, 1857–1862. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sauer, N.; Buhl, L.; Yang, W.; Zhang, L.; Neilson, D.T. An InP-based optical equalizer monolithically integrated with a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 2007, 19, 1514–1516. [Google Scholar] [CrossRef]
- Absil, P.; Hryniewicz, J.; Little, B.; Wilson, R.; Joneckis, L.; Ho, P.T. Compact microring notch filters. IEEE Photonics Technol. Lett. 2000, 12, 398–400. [Google Scholar] [CrossRef]
- Lee, M.C.; Wu, M.C. MEMS-actuated microdisk resonators with variable power coupling ratios. IEEE Photonics Technol. Lett. 2005, 17, 1034–1036. [Google Scholar] [CrossRef]
- Zhou, Z.; Yin, B.; Deng, Q.; Li, X.; Cui, J. Lowering the energy consumption in silicon photonic devices and systems. Photonics Res. 2015, 3, B28–B46. [Google Scholar] [CrossRef]
- Kaspar, P.; Brenot, R.; Le Liepvre, A.; Accard, A.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Duan, G.H.; Pavarelli, N.; et al. Packaged hybrid III-V/silicon SOA. In Proceedings of the European Conference on Optical Communication, Cannes, France, 21–25 September 2014. [Google Scholar]
- Li, Y.; Zhang, Y.; Zhang, L.; Poon, A.W. Silicon and hybrid silicon photonic devices for intra-datacenter applications: State of the art and perspectives. Photonics Res. 2015, 3, B10–B27. [Google Scholar] [CrossRef]
- Gunn, C. CMOS photonics for high-speed interconnects. IEEE Micro 2006, 26, 58–66. [Google Scholar] [CrossRef]
- Tan, H.N.; Matsuura, M.; Kishi, N. Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect. J. Lightwave Technol. 2010, 28, 2593–2602. [Google Scholar] [CrossRef]
- Padmaraju, K.; Bergman, K. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 2014, 3, 269–281. [Google Scholar] [CrossRef]
- Ding, Y.; Pu, M.; Liu, L.; Xu, J.; Peucheret, C.; Zhang, X.; Huang, D.; Ou, H. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Opt. Express 2011, 19, 6462–6470. [Google Scholar] [CrossRef] [PubMed]
Parameter | ODI | MRR |
---|---|---|
(dB) | 0.22 | 0.34 |
(dB) | 3 | 2.78 |
Net gain (dB) | 8.91 * | 12.13 |
(%) | 93 | 97 |
(dB) | 14 | 14 |
(dB) | 1 | 2.87 |
(negative) Detuning offset (nm) | 0.05 | 0.12 |
SSMF distance (km) w/o dispersion compensation | 12 | 15 |
EOP at 12 km (%) | 87 | 91 |
Characteristic | MRR | ODI | |
---|---|---|---|
Free Spectral Range (FSR) | Width | Coarse | Dense |
Adjustment | Rather fine (radius) | Fine (path length imbalance) or bulky (optical delay line) | |
Multi-wavelength Operation | Yes | Yes | |
(i) ITU -Grid | Difficult for DWDM since it requires cascading; is compromised by increased footprint and complexity | Easy for DWDM | |
(ii) fixed interchannel spacing and spectral width | Yes, easy with single MRR owing to high and controllable finesse | Yes, difficult due to low and fixed finesse | |
(iii) handling of variations in channel positions | Yes, straightforward owing to sharp spectral selectivity | Yes, requires to concatenate multiple stages at the cost of increased complexity and insertion losses | |
Detuning | Feasibility | Yes, thermo-optic effect with mWs/FSR | |
Mechanism | Relaxed (periodic round-trips and resonant enhancement) | Tight (one-way interference) | |
Precision | Normal | Demanding | |
Tolerance | High | Medium | |
Tunability | Yes, high | Yes, medium | |
Peak-to-Notch Contrast Ratio (PNCR) | Magnitude | High (>20 dB) | |
Operating Condition | Demanding (critical coupling) | Normal (branching couplers splitting ratio) | |
Adjustment | Complicated (electrically driving MEMS to control gap between bus and ring) | Simple (varying power splitting ratio) | |
Tolerance | Tight (matching of field transmission coefficient and amplitude attenuation factor within 3%) | Relaxed (Within 10% of 3-dB power splitting ratio) | |
Temperature Sensitivity | Yes, high negative TOC material, but still not compatibility with standard CMOS technology | Yes, athermal operation without extra energy consumption | |
Integration Potential | Compatibility with planar light wave technology | Yes | Yes |
Co-packaging Platform with SOA | Yes (hybrid) | Yes (monolithic) | |
Device | Size and footprint | Ultra-compact | Compact or bulk |
Fabrication, (materials, techniques, processes) | Well-developed | Established | |
CMOS Compatible | Yes | Yes | |
Cost | Affordable (single channel amplification in SOA), Shared (multiple channel amplification in SOA) | ||
Commercial availability | Yes, increasing | Yes, widespread |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizou, Z.V.; Zoiros, K.E.; Hatziefremidis, A. Comparison of Basic Notch Filters for Semiconductor Optical Amplifier Pattern Effect Mitigation. Appl. Sci. 2017, 7, 783. https://doi.org/10.3390/app7080783
Rizou ZV, Zoiros KE, Hatziefremidis A. Comparison of Basic Notch Filters for Semiconductor Optical Amplifier Pattern Effect Mitigation. Applied Sciences. 2017; 7(8):783. https://doi.org/10.3390/app7080783
Chicago/Turabian StyleRizou, Zoe V., Kyriakos E. Zoiros, and Antonios Hatziefremidis. 2017. "Comparison of Basic Notch Filters for Semiconductor Optical Amplifier Pattern Effect Mitigation" Applied Sciences 7, no. 8: 783. https://doi.org/10.3390/app7080783
APA StyleRizou, Z. V., Zoiros, K. E., & Hatziefremidis, A. (2017). Comparison of Basic Notch Filters for Semiconductor Optical Amplifier Pattern Effect Mitigation. Applied Sciences, 7(8), 783. https://doi.org/10.3390/app7080783