Emotion-Based Classification and Indexing for Wallpaper and Textile
Abstract
:1. Introduction
2. Related Works
3. The Proposed Scheme
3.1. Feature Extraction
3.1.1. The Color Emotion Model
3.1.2. The Dynamic Extraction of the Main Colors
3.1.3. Identification of the Main Colors
- Step 1. Input the training vectors, S = {xi ∈ Rd | i = 1, 2,…, n}.
- Step 2. Initiate a codebook, C = {cj ∈ Rd | j = 1, 2,…, K}, which is randomly selected.
- Step 3. Set D0 = 0 and let k = 0.
- Step 4. Classify the training vectors into K clusters, according to xi ∈ Sq if ||xi − cq||p ≤ ||xi − cj||p for j q.
- Step 5. Update the cluster centers, cj, j = 1, 2,…, K, using cj = .
- Step 6. Set k ← k + 1 and compute the distortion Dk = .
- Step 7. If (Dk−1 − Dk) /Dk > (a small number), repeat Steps 4–6.
- Step 8. Output the codebook, C = {cj ∈ Rd| j = 1, 2,…, K}.
3.1.4. Determination of the Amount of Main Colors
3.1.5. Identification of the Background and the Foreground
3.1.6. Image Binarization and Pattern Analysis
3.2. Classification
3.3. Indexing
3.3.1. Reference Image
3.3.2. Semantic with Emotion
3.3.3. Semantic with Emotion and Complexity
4. Experimentation
4.1. Feature Extraction for All Images in Database
4.2. Indexing Using Emotion via Semantic
4.3. Indexing Using Emotion and Complexity via Semantic
4.4. Indexing Using Emotion and Complexity via Reference Image
5. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, N.Y.; Shin, Y.; KimJ, E.Y. Emotion-Based Textile Indexing Using Neural Networks. In Proceedings of the 2007 IEEE International Symposium on Consumer Electronics, Irving, TX, USA, 20–23 June 2007. [Google Scholar]
- Kim, E.Y.; Kim, S. Emotion-based Textile Indexing Using Color, Texture. Fuzzy Syst. Knowl. Discov. 2005, 3613, 1077–1080. [Google Scholar]
- Yang, C.K.; Peng, L.K. Automatic mood-transferring between color images. IEEE Comput. Graph. Appl. 2008, 28, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Dong, W.; Kong, Y.; Mei, X.; Paul, J.; Zhang, X. Content-Based Color Transfer. Comput. Graph. Forum 2013, 32, 190–203. [Google Scholar] [CrossRef]
- Pouli, T.; Reinhard, E. Progressive histogram reshaping for creative color transfer and tone reproduction. Comput. Graph. 2011, 35, 67–80. [Google Scholar] [CrossRef]
- Chang, Y.; Saito, S.; Uchikawa, K.; Nakajima, M. Example-based color stylization of images. ACM Trans. Appl. Percept. 2005, 2, 322–345. [Google Scholar] [CrossRef]
- Zhanga, M.; Zhanga, K.; Fenga, Q.; Wanga, J.; Konga, J.; Lua, Y. A novel image retrieval method based on hybrid information descriptors. J. Vis. Commun. Image Represent. 2014, 25, 1574–1587. [Google Scholar] [CrossRef]
- Dellagiacoma, M.; Zontone, P.; Boato, G. Emotion Based Classification of Natural Images. In Proceedings of the DETECT’11, the 2011 International Workshop on DETecting and Exploiting Cultural Diversity on the Social Web, Glasgow, Scotland, UK, 24 October 2011. [Google Scholar]
- Kobayashi, S. Color Image Scale; Kodansha International: Tokyo, Japan, 1992. [Google Scholar]
- Kobayashi, S. The Aim and Method of the Color Image Scale. Color Res. Appl. 1981, 6, 93–107. [Google Scholar] [CrossRef]
- Eisemann, L. Pantone’s Guide to Communicating with Color; Goodreads Inc.: San Francisco, CA, USA, 2000. [Google Scholar]
- Kawamoto, N.; Soen, T. Objective Evaluation of Color Design. II. Color Res. Appl. 1993, 18, 260–266. [Google Scholar] [CrossRef]
- Um, J.; Eum, K.; Lee, J. A Study of the Emotional Evaluation Models of Color Patterns Based on the Adaptive Fuzzy System and the Neural Network. Color Res. Appl. 2002, 27, 208–216. [Google Scholar] [CrossRef]
- Chien-Kuo, C. Color Scheme Bible Compact Edition; Grandtech Information Co., Ltd.: Taipei, Taiwan, 2011. [Google Scholar]
- Psychology of Color in Logo Design. Available online: www.huffingtonpost.com/brian-honigman/psychology-color-design-infographic_b_2516608.html (accessed on 26 March 2017).
- Reinhard, E.; Ashikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Comput. Graph. Appl. 2001, 21, 34–41. [Google Scholar] [CrossRef]
- Ou, L.C.; Luo, M.R.; Woodcock, A.; Wright, A. Colour emotions for single colours. In part I of A study of colour emotion and colour preference. Color Res. Appl. 2004, 29, 232–240. [Google Scholar] [CrossRef]
- Ou, L.C.; Luo, M.R.; Woodcock, A.; Wright, A. Colour emotions for two-colour combinations. In part II of A study of colour emotion and colour preference. Color Res. Appl. 2004, 29, 292–298. [Google Scholar] [CrossRef]
- Wang, W.; Yu, Y.; Jiang, S. Image retrieval by emotional semantics. A study of emotional space and feature extraction. In Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; Volume 4, pp. 3534–3539. [Google Scholar]
- Csurka, G.; Skaff, S.; Marchesotti, L.; Saunders, C. Learning moods and emotions from color combinations. In Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP ’10, Chennai, India, 12–15 December 2010; pp. 298–305. [Google Scholar]
- Foley, J.D.; Dam, A.V.; Feiner, S.k.; Hughes, J.F. Computer Graphics: Principles and Practice; Addison-Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Su, Y.Y.; Chang, C.C. A New Approach of Color Image Quantization Based on Multi-Dimensional Directory. In Proceedings of the VRAI’ 2002, Virtual Reality and its Application in Industry, Hangzhou, China, 9–12 April 2002; pp. 508–514. [Google Scholar]
- Linde, Y.; Buzo, A.; Gray, R.M. An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. 1980, 28, 84–95. [Google Scholar] [CrossRef]
- Singha, M.; Hemachandran, K. Content Based Image Retrieval using Color and Texture. Signal Image Process. 2012, 3. [Google Scholar] [CrossRef]
- Chaudhari, R.; Patil, A.M. Content Based Image Retrieval Using Color and Shape Features. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2012, 1. [Google Scholar] [CrossRef]
- Datta, R.; Joshi, D.; Li, J.; Wang, J.Z. Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Comput. Surv. 2008, 40. [Google Scholar] [CrossRef]
- Eysenck, H.J. A critical and experimental study of colour preferences. Am. J. Psychol. 1941, 54, 385–394. [Google Scholar] [CrossRef]
- Cohn, J. Experimentelle Untersuchunger uber Gefuhlsbetonung Farben, helligkeiten und ihre Combinationen. Philos. Stud. 1894, 10, 562–603. [Google Scholar]
- Norman, R.D.; Scott, W.A. Colour and affect: A review and semantic evaluation. J. Gen. Psychol. 1952, 46, 185–233. [Google Scholar] [CrossRef]
- Amara. The Complete Guide to Colour Psychology. Available online: www.amara.com/luxpad/inspiration/colour-psychology/ (accessed on 29 February 2016).
- Tai, Y.W.; Jia, J.; Tang, C.K. Local color transfer via probabilistic segmentation by expectation-maximization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 747–754. [Google Scholar]
- Sato, T.; Kajiwara, K.; Hoshino, H.; Nakamura, T. Quantitative evaluation and categorizing of human emotion induced by colour. Adv. Colour Sci. Technol. 2000, 3, 53–59. [Google Scholar]
- Lee, J.; Cheon, Y.M.; Kim, S.Y.; Park, E.J. Emotional evaluation of color patterns based on rough sets. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Korea, 23–24 November 2007; Volume 1, pp. 140–144. [Google Scholar]
- Tanaka, S.; Iwadate, Y.; Inokuchi, S. An attractiveness evaluation model based on the physical features of image regions. In Proceedings of the 15th International Conference on Pattern Recognition, ICPR-2000, Barcelona, Spain, 3–7 September 2000. [Google Scholar]
- Itten, J. Art of Colour; Van Nostrand Reinhold: New York, NY, USA, 1962. [Google Scholar]
- Mao, X.; Chen, B.; Muta, I. Affective property of image and fractal dimension. Chaos Solitons Fractals 2003, 15, 905–910. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Choi, D. Designing emotionally evocative homepages: An empirical study of the quantitative relations between design factors and emotional dimensions. Int. J. Hum. Comput. Stud. 2003, 59, 899–940. [Google Scholar] [CrossRef]
- CIELAB. CIELab–Color Models-Technical Guides. Available online: dba.med.sc.edu/price/irf/Adobe_tg/models/cielab.html (accessed on 26 February 2017).
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Gray, R. Vector Quantization. IEEE ASSP Mag. 1984, 1, 4–29. [Google Scholar] [CrossRef]
- Krishnan, N.; Banu, M.S.; Christiyana, C.C. Content Based Image Retrieval Using Dominant Color Identification Based on Foreground Objects. In Proceedings of the International Conference on Conference on Computational Intelligence and Multimedia Applications, Sivakasi, Tamil Nadu, India, 13–15 December 2007; Volume 3. [Google Scholar]
- Zhang, D.; Lu, G. Evaluation of Similarity Measurement for Image Retrieval. In Proceedings of the IEEE International Conference Neural Networks & Signal Processing, Nanjing, China, 14–17 December 2003. [Google Scholar]
- Ravishankar, K.C.; Prasad, B.G.; Gupta, S.K.; Biswas, K.K. Dominant color region based indexing for CBIR. In Proceedings of the International Conference on Image Analysis and Processing, Venice, Italy, 27–29 September 1999; pp. 887–892. [Google Scholar]
- Talib, A.; Mahmuddin, M.; Husni, H.; George, L.E. Dominant Color-Based Indexing Method for Fast Content-Based Image Retrieval. J. Vis. Commun. Image Represent. 2013, 24, 345–360. [Google Scholar] [CrossRef]
Indexing | Reference Image | Semantic | ||
---|---|---|---|---|
Effects | Emotion + Complexity | Emotion | Emotion + Complexity | |
Satisfied | 70.25 | 57.50 | 71.25 | |
Partially Satisfied | 28.50 | 33.75 | 25.00 | |
Dissatisfied | 1.25 | 8.75 | 3.75 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.-Y.; Sun, H.-M. Emotion-Based Classification and Indexing for Wallpaper and Textile. Appl. Sci. 2017, 7, 691. https://doi.org/10.3390/app7070691
Su Y-Y, Sun H-M. Emotion-Based Classification and Indexing for Wallpaper and Textile. Applied Sciences. 2017; 7(7):691. https://doi.org/10.3390/app7070691
Chicago/Turabian StyleSu, Yuan-Yuan, and Hung-Min Sun. 2017. "Emotion-Based Classification and Indexing for Wallpaper and Textile" Applied Sciences 7, no. 7: 691. https://doi.org/10.3390/app7070691
APA StyleSu, Y.-Y., & Sun, H.-M. (2017). Emotion-Based Classification and Indexing for Wallpaper and Textile. Applied Sciences, 7(7), 691. https://doi.org/10.3390/app7070691