# Universal Voltage Conveyor and its Novel Dual-Output Fully-Cascadable VM APF Application

^{*}

## Abstract

**:**

## 1. Introduction

- (i)
- (ii)
- (iii)
- All passive components are grounded, which is advantageous for monolithic integration [9],
- (iv)
- (v)

## 2. Circuit Description

## 3. Non-Ideal Analysis

- the parasitic resistance ${R}_{\mathrm{X}}$ and parasitic capacitance ${C}_{\mathrm{X}}$ appear between the high-impedance terminal X of the UVC and ground and their values computed in SPICE software are ${R}_{\mathrm{X}}=378.73$ k$\mathsf{\Omega}\phantom{\rule{3.33333pt}{0ex}}\parallel \phantom{\rule{3.33333pt}{0ex}}{C}_{\mathrm{X}}=17.41$ pF, respectively,
- the non-zero parasitic resistance ${R}_{\mathrm{YP}}$ and ${R}_{\mathrm{YN}}$ at two difference current inputs YP and YN have values ${R}_{\mathrm{YP}}=1.27$ Ω and ${R}_{\mathrm{YN}}=0.51$ Ω, respectively,
- the parasitic resistance ${R}_{\mathrm{W}}$ and parasitic capacitance ${C}_{\mathrm{W}}$ appear between the auxiliary terminal W of the UVC and ground and their values are ${R}_{\mathrm{W}}=88.19$ M$\mathsf{\Omega}\phantom{\rule{3.33333pt}{0ex}}\parallel \phantom{\rule{3.33333pt}{0ex}}{C}_{\mathrm{W}}=4.19$ pF, respectively,
- the non-zero parasitic resistance ${R}_{\mathrm{ZP}}$ and ${R}_{\mathrm{ZN}}$ at mutually inverse voltage outputs ZP and ZN have values ${R}_{\mathrm{ZP}}=1.01$ Ω and ${R}_{\mathrm{ZN}}=0.71$ Ω, respectively.

- at the node ①, a parasitic impedance ${Z}_{\mathrm{X}}=1/{Y}_{\mathrm{X}}={R}_{\mathrm{X}}\parallel (1/s{C}_{\mathrm{X}})$ can be seen. Note that the capacitance ${C}_{\mathrm{X}}$ and resistance ${R}_{\mathrm{X}}$ can be absorbed into external capacitor ${C}_{1}$ and resistor ${R}_{1}$, respectively, as they appear in parallel. Hence, in further analysis the total capacitance and resistance at this node will be considered ${C}_{1}^{\prime}$ and ${R}_{1}^{\prime}={Z}_{1}^{\prime}$,
- the node ② at low-impedance terminal YP is characterized by a parasitic impedance ${Z}_{\mathrm{YP}}={R}_{\mathrm{YP}}$, which is in series with external capacitor ${C}_{2}$, and by assuming it as an impedance ${Z}_{{C}_{2}}=1/{Y}_{{C}_{2}}=1/s{C}_{2}$, the total impedance at this node can be described as ${Z}_{{C}_{2}}^{\prime}$,
- finally, the node ③ can be characterized by a parasitic impedance ${Z}_{\mathrm{YN}}={R}_{\mathrm{YN}}$, which appears in series with external resistor ${R}_{2}={Z}_{2}$. Hence, the total impedance at this node can be labeled as ${Z}_{2}^{\prime}$.

## 4. Experimental Verification

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Maheshwari, S. Analogue signal processing applications using a new circuit topology. IET Circ. Device Syst.
**2009**, 3, 106–115. [Google Scholar] [CrossRef] - Chen, H.P.; Wu, K.H. Grounded-capacitor first-order filter using minimum components. IEICE Trans. Fundam.
**2006**, E89-A, 3730–3731. [Google Scholar] [CrossRef] - Tran, H.-D.; Wang, H.-Y.; Lin, M.-C.; Nguyen, Q.-M. Synthesis of cascadable DDCC-based universal filter using NAM. Appl. Sci.
**2015**, 5, 320–343. [Google Scholar] [CrossRef] - Kartci, A.; Sotner, R.; Jerabek, J.; Herencsar, N.; Petrzela, J. Phase shift keying modulator design employing electronically controllable all-pass sections. Analog Integr. Circ. Signal Process.
**2016**, 89, 781–800. [Google Scholar] [CrossRef] - Biolek, D.; Biolkova, V. All-Pass Filters Employing Differential Op-Amps. Electron. World
**2010**, 116, 44–45. [Google Scholar] - Biolkova, V.; Kolka, Z.; Biolek, D. Dual-output all-pass filter employing fully-differential operational amplifier and current-controlled current conveyor. In Proceedings of the 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1–4 December 2011; pp. 340–344.
- Chen, H.-P.; Lin, M.-T.; Yang, W.-S. Novel first-order non-inverting and inverting output of all-pass filter at the same configuration using ICCII. IEICE Trans. Electron.
**2006**, 89-C, 865–867. [Google Scholar] [CrossRef] - Mohan, J.; Maheshwari, S.; Chauhan, D.S. Minimum component based first-order inverting and non-inverting outputs of all-pass filter at the same circuit. ACEEE Int. J. Electr. Power Eng.
**2010**, 1, 32–35. [Google Scholar] - Chaturvedi, B.; Mohan, J. Single DV-DXCCII based voltage controlled first order all-pass filter with inverting and non-inverting responses. Iran. J. Electr. Electron. Eng.
**2015**, 11, 301–309. [Google Scholar] - Herencsar, N.; Minaei, S.; Koton, J.; Yuce, E.; Vrba, K. New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integr. Circ. Signal Process.
**2013**, 74, 141–154. [Google Scholar] [CrossRef] - Herencsar, N.; Koton, J.; Vrba, K. A new electronically tunable voltage-mode active-C phase shifter using UVC and OTA. IEICE Electron. Express
**2009**, 6, 1212–1218. [Google Scholar] [CrossRef] - Herencsar, N.; Koton, J.; Vrba, K.; Cicekoglu, O. High-input and low-output impedance voltage-mode all-pass filter using single universal voltage conveyor. In Proceedings of the International Conference on Telecommunications and Signal Processing TSP 2010, Baden near Vienna, Austria, 17–20 August 2010; pp. 42–46.
- Herencsar, N.; Koton, J.; Jerabek, J.; Vrba, K.; Cicekoglu, O. Voltage-mode all-pass filters using universal voltage conveyor and MOSFET-based electronic resistors. Radioengineering
**2011**, 20, 10–18. [Google Scholar] - Metin, B.; Herencsar, N.; Koton, J. Cascadable all-pass filter using a single universal voltage conveyor. In Proceedings of the 2012 22nd International Conference Radioelektronika (RADIOELEKTRONIKA), Brno, Czech Republic, 17–18 April 2012; pp. 97–100.
- Filanovsky, I.M.; Stromsmoe, K.A. Current-voltage conveyor. Electron. Lett.
**1981**, 17, 129–130. [Google Scholar] [CrossRef] - Salama, K.; Soliman, A. Novel MOS-C quadrature oscillator using the differential current voltage conveyor. In Proceedings of the 42nd Midwest Symposium on Circuits and Systems, Las Cruces, NM, USA, 8–11 August 1999; pp. 279–282.
- Acar, C.; Ozoguz, S. A new versatile building block: Current differencing buffered amplifier suitable for analog signal processing filters. Microelectron. J.
**1999**, 30, 157–160. [Google Scholar] [CrossRef] - Pathak, J.K.; Singh, A.K.; Senani, R. New canonic lossy inductor using a single CDBA and its application. Int. J. Electron.
**2016**, 103, 1–13. [Google Scholar] [CrossRef] - Minarcik, M.; Vrba, K. Single-input six-output voltage-mode filter using universal voltage conveyors. IEICE Trans. Fundam.
**2008**, E91-A, 2035–2037. [Google Scholar] [CrossRef] - Koton, J.; Vrba, K.; Herencsar, N. Tuneable filter using voltage conveyors and current active elements. Int. J. Electron.
**2009**, 96, 787–794. [Google Scholar] [CrossRef] - Koton, J.; Herencsar, N.; Vrba, K. Minimal configuration precision full-wave rectifier using current and voltage conveyors. IEICE Electron. Express
**2010**, 7, 844–849. [Google Scholar] [CrossRef] - Koton, J.; Herencsar, N.; Vrba, K. KHN-equivalent voltage-mode filters using universal voltage conveyors. AEU Int. J. Electron. Commun.
**2011**, 65, 154–160. [Google Scholar] [CrossRef] - Sponar, R.; Vrba, K. Measurements and behavioral modelling of modern conveyors. Int. J. Comput. Sci. Netw. Secur.
**2006**, 6, 57–65. [Google Scholar] - UVC-N1C 0520 Datasheet; Universal Voltage Conveyor: ON Semiconductor & Brno University of Technology, Czech Republic. 2010. Available online: www.utko.feec.vutbr.cz/∼herencsar/UVC_N1C_0520.pdf (accessed on 10 February 2017).

**Figure 4.**Measured magnitude (blue line) and phase (red line) responses of the VM APF for outputs: (

**a**) ${V}_{\mathrm{o}1}$; (

**b**) ${V}_{\mathrm{o}2}$ with cursor position at ${f}_{\mathrm{p}\_\mathrm{meas}}$.

**Figure 5.**Measured noise variations for both voltage outputs versus frequency (red line—${V}_{\mathrm{o}1}$, blue line—${V}_{\mathrm{o}2}$).

**Figure 6.**Measured time-domain waveforms (blue line—input, orange line—${V}_{\mathrm{o}1}$, pink line—${V}_{\mathrm{o}2}$).

**Figure 7.**Measured Fourier spectrum of the output signals: (

**a**) ${V}_{\mathrm{o}1}$, (

**b**) ${V}_{\mathrm{o}2}$.

Reference | ABB Type | Grounded R/C | Floating R/C | Simul./Meas. | ${\mathit{f}}_{\mathbf{p}}$ (Hz) | Supply (V) |
---|---|---|---|---|---|---|

Figure 4b in [5] | FD-OPA & CCII | 0/0 | 1/1 | Meas. | 29.6 k | ±5 |

Figure 1 in [6] | FD-OPA | 0/0 | 0/1 | Simul. | 92 k | ±1.5 |

Figure 2 in [7] | ICCII+ | 0/0 | 1/1 | Simul. | 1.59 M | ±1.25 |

Figure 2 in [8] | FDCCII | 0/1 | 1/0 | Simul. | 159.2 k | ±3 |

Figure 2 in [9] | DV-DXCCII & 1 NMOS | 0/1 | 0/0 | Simul. | 27 M | ±0.9 |

Figure 3 in [10] | VDIBA | 0/0 | 0/1 | Both | S: 9.44 M; M: 1 M | ±0.9; ±5 |

Figure 1 in [11] | UVC & OTA | 0/0 | 0/1 | Simul. | 3 M | ±2 |

Figure 3 in [12] | UVC | 2/0 | 1.I | Both | S: 3.5 M; M: 160.4 k | ±2.5; ±1.65 |

Figure 2a in [13] | UVC | 2/0 | 0/1 | Simul. | 1.17 M | ±2.5 |

Figure 2b in [13] | UVC | 2/0 | 0/1 | Both | S: 1.17 M; M: 746.4 k | ±2.5; ±1.65 |

Figure 2 in [14] | UVC | 0/1 | 2/0 | Simul. | 390 k | ±2.5 |

This work | UVC | 2/2 | 0/0 | Meas. | 277.8 k | ±1.65 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Herencsar, N.; Koton, J.; Hanak, P. Universal Voltage Conveyor and its Novel Dual-Output Fully-Cascadable VM APF Application. *Appl. Sci.* **2017**, *7*, 307.
https://doi.org/10.3390/app7030307

**AMA Style**

Herencsar N, Koton J, Hanak P. Universal Voltage Conveyor and its Novel Dual-Output Fully-Cascadable VM APF Application. *Applied Sciences*. 2017; 7(3):307.
https://doi.org/10.3390/app7030307

**Chicago/Turabian Style**

Herencsar, Norbert, Jaroslav Koton, and Pavel Hanak. 2017. "Universal Voltage Conveyor and its Novel Dual-Output Fully-Cascadable VM APF Application" *Applied Sciences* 7, no. 3: 307.
https://doi.org/10.3390/app7030307