Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology Used in the Study
- ρa—resistivity of a bedrock,
- I—intensity of current applied to the soil by electrodes AB (mA),
- ΔV—differential potential between electrodes MN (mV),
- k—geometrical coefficient of electrode positioning (m).
- , , , —distance between electrodes (m).
2.2. Contamination Influencing the Resistivity of a Soil
3. Results and Discussion
3.1. Municpal Landfill with Liners Installed-Leakage Investigation
- The pumping of contaminated water from piezometer P-2 and the redirecting to the pumping station on the landfill;
- A depression well construction of enough discharge to transmit the leachate from the landfill, to a sewage treatment plant;
- A landfill bottom sealing in the area where leakage was detected, with the use of injecting methods.
- too much water being pumped, causing the chloride concentration to increase (lower dissolution);
- seasonal changes of the groundwater table and a wash out of the soil elements.
3.2. Municipal Landfill with No Liner
3.3. Closed Industrial Waste Landfill with No Liner Installed
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Koda, E. Landfill Stability under Reclamation and Pollutant Transport Using the Observational Method; Warsaw University of Life Sciences Press: Warsaw, Poland, 2011. [Google Scholar]
- Vaverková, M.; Toman, F.; Adamcová, D.; Kotovicová, J. Verifying Research of Waste Landfill Environmental Impact Using Bioindicators. Pol. J. Environ. Stud. 2013, 22, 313–317. [Google Scholar]
- Gworek, B.; Dmuchowski, W.; Gozdowski, D.; Koda, E.; Osiecka, R.; Borzyszkowski, J. Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Adamcová, D.; Vaverková, M.D.; Bartoň, S.; Havlíček, Z.; Břoušková, E. Soil Contamination in Landfills: A Case Study of a Landfill in Czech Republic. Sol. Earth 2016, 7, 239–247. [Google Scholar] [CrossRef]
- Elis, V.R.; Mondelli, G.; Giacheti, H.L.; Peixoto, A.S.P.; Hamada, J. The Use of Electrical Resistivity for Detection of Leachate Plumes in Waste Disposal Sites. In Proceedings of the ISC-2 on Geotechnical and Geophysical Site Characterization, Porto, Portugal, 19–22 September 2004; pp. 467–474.
- Batayneh, A.T. 2D Electrical Imaging of an LNAPL Contamination, Al Amiriya Fuel Station, Jordan. J. Appl. Sci. 2005, 5, 52–59. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley and Sons Ltd.: New York, NY, USA, 2011. [Google Scholar]
- Koda, E.; Kołanka, T.; Osiński, P. Investigation of Soil Contamination Level beneath the Metallurgical Waste Landfill for the Purpose of Future Reclamation Works. Land Reclam. 2013, 45, 5–16. [Google Scholar] [CrossRef]
- Koda, E.; Osiński, P. Site Investigation of an Industrial Landfill for the Purpose of a Remedial Works Project. In Proceedings of the Geo-Chicago 2016: Sustainable Waste Management and Remediation 2016, Chicago, IL, USA, 14–18 August 2016; pp. 750–757.
- Friedman, S.P. Soil Properties Influencing Apparent Electrical Conductivity. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Lowrie, W. Fundamentals of Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mondelli, G.; Giacheti, H.L.; Elis, V.R. The use of resistivity for detecting MSW contamination plumes in a tropical soil site. In Proceedings of the 6th International Congress on Environmental Geotechnics, New Delhi, India, 8–12 November 2010; Hill, M.G., Ed.; Volume II, pp. 1544–1549.
- Giang, N.V.; Marquis, G.; Minh, L.H. EM and GPR Investigations of Contaminant Spread Around the Hoc Mon Waste Site, Vietnam. Acta Geophys. 2010, 58, 1040–1056. [Google Scholar] [CrossRef]
- Giang, N.V.; Duan, N.B.; Thanh, L.N.; Hida, N. Geophysical Techniques to Aquifer Locating and Monitoring for Industrial Zones in North Hanoi, Vietnam. Acta Geophys. 2013, 61, 1573–1597. [Google Scholar] [CrossRef]
- Oh, T.-M.; Cho, G.-C.; Lee, C. Effect of Soil Mineralogy and Pore-Water Chemistry on the Electrical Resistivity of Saturated Soils. J. Geotech. Geoenviron. Eng. 2014, 140, 601–612. [Google Scholar] [CrossRef]
- Asfahani, J.; Zakhem, B.A. Geoelectrical and Hydrochemical Investigations for Characterizing the Salt Water Intrusion in the Khanasser Valley, Northern Syria. Acta Geophys. 2013, 61, 422–444. [Google Scholar] [CrossRef]
- De Carlo, L.; Perri, M.T.; Caputo, M.C.; Deiana, R.; Vurro, M.; Cassiani, G. Characterization of a Dismissed Landfill via Electrical Resistivity Tomography and Mise-à-la-Masse Method. J. Appl. Geophys. 2013, 98, 1–10. [Google Scholar] [CrossRef]
- Sas, W.; Głuchowski, A.; Radziemska, M.; Dzięcioł, J.; Szymański, A. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure. Materials 2015, 8, 4857–4875. [Google Scholar] [CrossRef]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Zahody, A.A.P.; Eaton, G.P.; Mabey, D.R. Electrical Methods in US Geological Survey. Ch. 2: Application of Surface Geophysics to Ground—Water Investigations; USGS Publications: Denver, CO, USA, 1974. [Google Scholar]
- Wisen, R.; Dahlin, T.; Auken, E. Resistivity Imaging as a Tool in Shallow Site Investigation—A Case Study. In Proceedings of the ISC-2 on Geotechnical and Geophysical Site Characterization, Porto, Portugal, 19–22 September 2004; pp. 607–613.
- Samouelian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical Resistivity Survey in Soil Science. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Stummer, P.; Maurer, H.; Green, A. Experimental design: Electrical Resistivity Data Sets that Provide Optimum Subsurface Information. Geophysics 2004, 69, 120–139. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent Developments in the Direct-Current Geoelectrical Imaging Method. J. Appl. Geophys. 2013, 95, 135–158. [Google Scholar] [CrossRef]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. Am. Inst. Min. Metall. Eng. 1942, 146, 54–61. [Google Scholar] [CrossRef]
- Atkins, E.R.; Smith, G.H. The Significance of Particle Shape in Formation Resistivity Factor–Porosity Relationships. J. Petrol. Technol. 1961, 13, 285–291. [Google Scholar] [CrossRef]
- Jackson, P.D.; Taylor Smith, D.; Stanford, P.N. Resistivity–Porosity–Particle Shape Relationships for Marine Sands. Geophysics 1978, 43, 1250–1268. [Google Scholar]
- Vogelsang, D. Environmental Geophysics. A Practical Guide; Springer: Berlin, Heidelberg, 1995. [Google Scholar]
- Long, M.; Donohue, S.; L’Heureux, J.-S.; Solberg, I.-L.; Rønning, J.S.; Limacher, R.; O’Connor, P.; Sauvin, G.; Rømoen, M.; Lecomte, I. Relationship between Electrical Resistivity and Basic Geotechnical Parameters for Marine Clays. Can. Geotech. J. 2012, 49, 1158–1168. [Google Scholar] [CrossRef] [Green Version]
- Nabawy, B.S. Impacts of the Pore- and Petro-fabrics on Porosity Exponent and Lithology Factor of Archie’s Equation for Carbonate Rocks. J. Afr. Earth Sci. 2015, 108, 101–114. [Google Scholar] [CrossRef]
- Jeleńska, M.; Hasso-Agopsowicz, A.; Kądziałko-Hofmokl, M.; Kopcewicz, B.; Sukhorada, A.; Bondar, K.; Matviishina, Z. Magnetic Structure of Polluted Soil Profiles from Eastern Ukraine. Acta Geophys. 2008, 56, 1043–1064. [Google Scholar] [CrossRef]
- Knődel, K.; Krummel, H.; Lange, G. Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten; Springer: Berlin, Heidelberg, 2005. [Google Scholar]
- Koda, E. Influence of Vertical Barrier Surrounding Old Sanitary Landfill on Eliminating Transport of Pollutants on the Basis of Numerical Modelling and Monitoring Results. Pol. J. Environ. Stud. 2012, 21, 929–935. [Google Scholar]
- Regulation of The Minister of Environment Dated 21 December 2015 on The Criteria and Method of Evaluating The Underground Water Condition. Available online: http://isap.sejm.gov.pl/DetailsServlet?id=WDU20160000085 (accessed on 22 June 2016).
Indicator | Unit | Amount | Water Class * |
---|---|---|---|
Nitrate | mg NO3/dm3 | 56 | IV |
Phosphate | mg PO4/dm3 | 3,1 | IV |
Sulphate | mg SO4/dm3 | 344 | V |
Chloride | mg Cl/dm3 | 819 | V |
Soil Type | Conductivity [μS/cm] | Resistivity [Ωm] |
---|---|---|
Sands, over dried topsoil | 3.7–9.1 | 1100–2700 |
Well graded sands, dry, locally moist | 29.7–187 | 53.4–336 |
Wet sands, contaminated at the bottom | 361–1428 | 7–27.7 |
Sandy clay, contaminated at the top | 540–3448 | 2.9–18.5 |
Wet sands below clay layer | 136–990 | 10.1–73.1 |
Wet sands, with no clayey layers | 281–540 | 18.5–15.5 |
Material Type | Resistivity (Ωm) |
---|---|
Clayey anthropogenic soil | 49–90 |
Municipal waste | 16–29 |
Dry sands | 1458–2015 |
Wet sands, contaminated at the bottom | 38–836 |
Sandy clay | 49–90 |
Test No. | Waste Thickness (m) | Resistivity of Waste (Ωm) | Depth of Clay Layer (m b.s.l) |
---|---|---|---|
SGE 1 | None | - | 17.4 |
SGE 2 | 4.2 | 29 | 18.8 |
SGE 3 | 7.4 | 17 | 19.7 |
SGE 4 | 6.2 | 12 | - |
SGE 5 | 6.6 | 27 | 17.1 |
SGE 6 | None | - | 9.5 |
SGE 7 | 7.5 | 20 | 18.7 |
SGE 8 | 6.6 | 19 | 19.5 |
Material Type | Resistivity (Ωm) |
---|---|
Anthropogenic material (slag, slag mixed with waste) | 3–342 |
Well graded dry sands | 176–1126 |
Clean clays and sandy clays | 15–55 |
Contaminated clays and sandy clays | 4–14 |
Sands (fine, clayey, silty) | 135–135 |
Contaminated sands (fine, clayey, silty) | 7–14 |
Sand/clay deposits | 24–100 |
Silty clays, impermeable layers | 4–45 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koda, E.; Tkaczyk, A.; Lech, M.; Osiński, P. Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil. Appl. Sci. 2017, 7, 262. https://doi.org/10.3390/app7030262
Koda E, Tkaczyk A, Lech M, Osiński P. Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil. Applied Sciences. 2017; 7(3):262. https://doi.org/10.3390/app7030262
Chicago/Turabian StyleKoda, Eugeniusz, Andrzej Tkaczyk, Mariusz Lech, and Piotr Osiński. 2017. "Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil" Applied Sciences 7, no. 3: 262. https://doi.org/10.3390/app7030262
APA StyleKoda, E., Tkaczyk, A., Lech, M., & Osiński, P. (2017). Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil. Applied Sciences, 7(3), 262. https://doi.org/10.3390/app7030262