Intensification of Organophosphorus Hydrolase Synthesis by Using Substances with Gas-Transport Function
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological and Chemical Materials
2.2. Synthesis of Perfluoroethers
2.3. General Experimental Procedures
2.4. Analysis Methods
3. Results
3.1. Cultivation of Recombinant Protein-Producing Cells in Media Containing PFCs
3.2. Studying the Possibility of muLtiple re-Use of Gas Transport-Capable Substances in Biosynthesis of Intracellular Proteins
4. Discussion
5. Conclusions
6. Patents
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Jeon, C.O. High-throughput recombinant protein expression in Escherichia coli: Current status and future perspectives. Open Biol. 2016, 6, 160196. [Google Scholar] [CrossRef] [PubMed]
- Fakruddin, M.; Mohammad Mazumdar, R.; Bin Mannan, K.S.; Chowdhury, A.; Hossain, M.N. Critical factors affecting the success of cloning, expression, and mass production of enzymes by recombinant E. coli. ISRN Biotechnol. 2013, 2013, 590587. [Google Scholar] [CrossRef] [PubMed]
- Spadiut, O.; Capone, S.; Krainer, F.; Glieder, A.; Herwig, C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol. 2014, 32, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.K.; Shrivastva, A.; Biswal, K.C.; Lakshmana Rao, P.V. Optimization of culture medium for production of recombinant dengue protein in Escherichia coli. Ind. Biotechnol. 2009, 5, 179–183. [Google Scholar] [CrossRef]
- Kamionka, M. Engineering of therapeutic proteins production in Escherichia coli. Curr. Pharm. Biotechnol. 2011, 12, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Baeshen, M.N.; Al-Hejin, A.M.; Bora, R.S.; Ahmed, M.M.; Ramadan, H.A.; Saini, K.S.; Baeshen, N.A.; Redwan, E.M. Production of biopharmaceuticals in E. coli: Current scenario and future perspectives. J. Microbiol. Biotechnol. 2015, 25, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ochoa, F.; Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2009, 27, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Weloosamy, H.; Lim, S.-H. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World J. Biol. Chem. 2015, 6, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Lowe, K.C. Perfluorochemical respiratory gas carriers: Benefits to cell culture systems. J. Fluorine Chem. 2002, 118, 19–26. [Google Scholar] [CrossRef]
- Pilarek, M.; Szewczyk, K.W. Effects of perfluorinated oxygen carrier application in yeast, fungi and plant cell suspension cultures. Biochem. Eng. J. 2008, 41, 38–42. [Google Scholar] [CrossRef]
- Vieira, E.S.; de Oliveira Fontes, K.T.; Pereira, M.M.; Alexandre, H.V.; da Silva, D.P.; Soares, C.M.F.; Lima, A.S. New strategy to apply perfluorodecalin as an oxygen carrier in lipase production: Minimisation and reuse. Bioprocess. Biosyst. Eng. 2015, 38, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Martinson, E.A.; Birjukov, V.V.; Bakulin, V.M.; Kruchkov, A.V.; Sincov, K.N. Influence of perfluorodecalin on growth of Escherichia coli of М-17 at deep cultivation. Fundam. Res. 2014, 5, 71–74. [Google Scholar]
- Pilarek, M. Liquid perfluorochemicals as flexible and efficient gas carrier applied in bioprocess engineering an updated overview and future prospect. Chem. Process. Eng. 2014, 35, 463–487. [Google Scholar] [CrossRef]
- Pilarek, M.; Brand, E.; Hillig, F.; Krause, M.; Neubauer, P. Enhanced plasmid production in miniaturized high-cell-density cultures of Escherichia coli supported with perfluorinated oxygen carrier. Bioprocess. Biosyst. Eng. 2013, 36, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Lowe, K.C.; Davey, M.R.; Power, J.B. Perfluorochemicals: Their applications and benefits to cell culture. Trends Biotechnol. 1998, 16, 272–277. [Google Scholar] [CrossRef]
- Pilarek, M.; Glazyrina, J.; Neubauer, P. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures. Microb. Cell Fact. 2011, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Grunzel, P.; Pilarek, M.; Steinbrück, D.; Neubauer, A.; Brand, E.; Kumke, M.U.; Neubauer, P.; Krause, M. Mini-scale cultivation method enables expeditious plasmid production in Escherichia coli. Biotechnol. J. 2014, 9, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Bakulin, M.K.; Grudtsyna, A.S.; Pletneva, A.Y.; Kucherenko, A.S.; Lyapustin, A.V.; Malakhov, I.G. Effect of perfluorodecalin, carbogal, and perfluoromethyldecalin on growth and ice-forming activity of bacteria. Microbiology 2006, 75, 312–316. [Google Scholar] [CrossRef]
- Su, L.; Shen, Y.; Gao, T.; Luo, J.; Wang, M. Improvement of AD biosynthesis response to enhanced oxygen transfer by oxygen vectors in Mycobacterium neoaurum TCCC 11979. Appl. Biochem. Biotechnol. 2017, 182, 1564–1574. [Google Scholar] [CrossRef] [PubMed]
- Lyagin, I.V.; Andrianova, M.S.; Efremenko, E.N. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase. Appl. Microbiol. Biotechnol. 2016, 100, 5829–5838. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, E.N.; Lyagin, I.V.; Klyachko, N.L.; Bronich, T.; Zavyalova, N.V.; Jiang, Y.; Kabanov, A.V. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. J. Control Release 2017, 247, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Sirotkina, M.; Efremenko, E.N. Rhodococcus lactonase with organophosphate hydrolase (oph) activity and his-tagged oph with lactonase activity: Evolutionary proximity of the enzymes and new possibilities in their application. Appl. Microbiol. Biotechnol. 2014, 98, 2647–2656. [Google Scholar] [CrossRef] [PubMed]
- Maslova, O.V.; Senko, O.V.; Stepanov, N.A.; Aslanli, A.G.; Efremenko, E.N. His6-OPH and its stabilized forms combating quorum sensing molecules of gram-negative bacteria in combination with antibiotics. Jundishapur J. Nat. Pharm. Prod. 2017, in press. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Votchitseva, Y.A.; Aliev, T.K.; Varfolomeev, S.D. Recombinant Plasmid DNA pTES-HIS-OPH and Producer of Oligohistidine-Containing Organophosphate Hydrolase. RU Patent 2255975 C 1, 10 July 2005. [Google Scholar]
- Lyagin, I.V.; Efremenko, E.N. Biomolecular engineering of biocatalysts hydrolyzing neurotoxic organophosphates. Biochimie 2018, 144, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.G.; Dias, A.M.A.; Coelho, M.A.Z.; Coutinho, J.A.P.; Marrucho, I.M. Aging mechanisms of perfluorocarbon emulsions using image analysis. J. Colloid Interface Sci. 2005, 286, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, E.; Votchitseva, Y.; Plieva, F.; Galaev, I.; Mattiasson, B. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography. Appl. Microbiol. Biotechnol. 2006, 70, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Berney, M.; Weilenmann, H.-U.; Julian Ihssen, J.; Bassin, C.; Egli, T. Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl. Environ. Microbiol. 2006, 72, 2586–2593. [Google Scholar] [CrossRef] [PubMed]
- Ntwampe, S.K.O.; Williams, C.C.; Sheldon, M.S. Influence of perfluorocarbons on Phanerochaete. chrysosporium biomass development, substrate consumption and enzyme production. Chem. Biochem. Eng. Q. 2010, 24, 187–194. [Google Scholar]
- Elibola, M.; Mavitunab, F. A remedy to oxygen limitation problem in antibiotic production: Addition of perfluorocarbon. Biochem. Eng. J. 1999, 3, 1–7. [Google Scholar] [CrossRef]
- Efremenko, E.; Lyagin, I.; Votchitseva, Y.; Sirotkina, M.; Varfolomeyev, S. Polyhistidine-containing organophosphorus hydrolase with outstanding properties. Biocatal. Biotransform. 2007, 25, 103–108. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Votchitseva, Y.A.; Aliev, T.K.; Varfolomeyev, S.D. Expression of recombinant organophosphorus hydrolase in active form. In Biocatalytic Technology and Nanotechnology; Zaikov, G.E., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2004; pp. 65–71. ISBN 1-59454-117-5. [Google Scholar]
- Efremenko, E.N.; Lyagin, I.V.; Votchitseva, Y.V.; Gudkov, D.A.; Peregudov, A.A.; Aliev, T.K.; Varfolomeev, S.D. The influence of length and localization of polyhistidine tag in the molecule of organophosphorus hydrolase on the biosynthesis and behavior of fusion protein. In Biotechnology: State of the Art and Prospects for Development; Zaikov, G.E., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2008; pp. 87–101. ISBN 978-1-60456-015-2. [Google Scholar]
PFCs | Molecular Mass (g/mol) | О2 Solubility at 298 K (% v/v) | Density (kg/m3) |
---|---|---|---|
1,1,1,2,2,3,3,4,4,5,5,6,6,6-tetradecafluorohexane Perfluorohexane CF3(CF2)4CF3 | 337.90 * | 55.5 | 1.678 * |
3,6-dioxaperfluoro-5-methylnonane (Polyether I) C3F7OCF(CF3)CF2OC2F5 | 470.05 | 52.0 | 1.790 |
1,1,2,2,3,3,4,4a,5,5,6,6,7,7,8,8,8a-octadecafluorodecalinPerfluorodecalin C10F18 | 461.98 * | 45.0 | 1.930 * |
4,7,10,13,16,19,22,25-octaoxaperfluoro- 5,8,11,14,17,18,21,24-octamethyloctacosane (Polyether II) [С3F3O(C2F4CF2O)4C2F4]2 | 1746.26 | 53.0 | 1.804 |
PFC (% v/v) | 0.3 | 0.5 | 1 | 3 | 5 |
---|---|---|---|---|---|
PFH | 0.363 ± 0.015 | 0.368 ± 0.017 | 0.374 ± 0.017 | 0.351 ± 0.014 | 0.349 ± 0.013 |
PFD | 0.345 ± 0.012 | 0.345 ± 0.012 | 0.345 ± 0.012 | 0.346 ± 0.012 | 0.345 ± 0.012 |
Polyether I | 0.352 ± 0.014 | 0.357 ± 0.015 | 0.358 ± 0.014 | 0.353 ± 0.014 | 0.347 ± 0.012 |
Polyether II | 0.367 ± 0.016 | 0.369 ± 0.016 | 0.376 ± 0.017 | 0.352 ± 0.014 | 0.349 ± 0.013 |
PFCs | Concentration (% v/v) | |||||
---|---|---|---|---|---|---|
0.3 | 0.5 | 1 | 2 | 3 | 5 | |
Perfluorohexane | 389.4 ± 19.2 | 410.7 ± 19.8 | 384.8 ± 18.9 | 325.6 ± 18.0 | 335.0 ± 16.2 | 271.9 ± 13.2 |
Perfluorodecalin | 334.4 ± 16.1 | 339.9 ± 16.8 | 341.7 ± 16.8 | 360.1 ± 16.9 | 337.0 ± 16.5 | 325.8 ± 15.3 |
Polyether I | 373.9 ± 18.3 | 384.2 ± 18.7 | 396.7 ± 19.6 | 337.7 ± 19.2 | 371.6 ± 18.2 | 350.3 ± 16.5 |
Polyether II | 361.7 ± 18.0 | 441.1 ± 21.2 | 463.5 ± 22.3 | 383.5 ± 20.7 | 380.0 ± 18.6 | 308.2 ± 14.9 |
E. coli Strain | Yield of Biomass (CDW/L) | Amax * in the Cells (U/g) | Process Productivity (U/L/h) | Total His6-OPH Activity (U/L) |
---|---|---|---|---|
DH5a [33] | 2.8 | 130 | 17.3 | 364.0 |
5.8 | 44 | 12.2 | 255.2 | |
W3110 [34] | 2.7 | 38 | 5.1 | 102.6 |
SG13009[pREP4] [34] | 4.3 | 34 | 6.1 | 146.2 |
SG13009[pREP4] (this work) | a 3.7 | 88 | 13.6 | 325.6 |
b 5.1 | 91.5 | 19.3 | 463.5 | |
c 4.4 | 93.3 | 17.1 | 410.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senko, O.; Stepanov, N.; Tyutyunov, A.; Sterlin, S.; Grinberg, V.; Makhlis, T.; Efremenko, E. Intensification of Organophosphorus Hydrolase Synthesis by Using Substances with Gas-Transport Function. Appl. Sci. 2017, 7, 1305. https://doi.org/10.3390/app7121305
Senko O, Stepanov N, Tyutyunov A, Sterlin S, Grinberg V, Makhlis T, Efremenko E. Intensification of Organophosphorus Hydrolase Synthesis by Using Substances with Gas-Transport Function. Applied Sciences. 2017; 7(12):1305. https://doi.org/10.3390/app7121305
Chicago/Turabian StyleSenko, Olga, Nikolay Stepanov, Andrey Tyutyunov, Sergey Sterlin, Vitaly Grinberg, Tatiana Makhlis, and Elena Efremenko. 2017. "Intensification of Organophosphorus Hydrolase Synthesis by Using Substances with Gas-Transport Function" Applied Sciences 7, no. 12: 1305. https://doi.org/10.3390/app7121305
APA StyleSenko, O., Stepanov, N., Tyutyunov, A., Sterlin, S., Grinberg, V., Makhlis, T., & Efremenko, E. (2017). Intensification of Organophosphorus Hydrolase Synthesis by Using Substances with Gas-Transport Function. Applied Sciences, 7(12), 1305. https://doi.org/10.3390/app7121305