Feasibility Assessments of the Use of Recycled Fibers in Nonwoven Fabrics
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Nonwoven Fabrics
3. Tests
3.1. Air Permeability Test
3.2. Stereomicroscopic Observation
3.3. Tensile Test
3.4. Tear Strength Test
3.5. Far Infrared Emissivity Test
4. Results and Discussion
4.1. The Effect of Content of Recycled Fiber on Air Permeability of Nonwoven Fabrics
4.2. The Effect of Content of Recycled Fibers on the Tensile Strength of Nonwoven Fabrics
4.3. Effect of Content of Recycled Fibers on the Tear Strength of Nonwoven Fabrics
4.4. Effect of Content of Recycle Fibers on the Far Infrared Emissivity of Nonwoven Fabrics
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PET | polyester |
FPET | far-infrared polyester |
TPET | three-dimensional crimped hollow flame-retarding polyester |
LPET | low-melting-point polyester |
FIR | far infrared |
CD | cross machine direction |
MD | machine direction |
References
- Broda, J.; Gawlowski, A.; Laszczak, R.; Mitka, A.; Przybylo, S.; Grzybowska-Pietras, J.; Rom, M. Application of innovative meandrically arranged geotextiles for the protection of drainage ditches in the clay ground. Geotext. Geomembr. 2017, 45, 45–53. [Google Scholar] [CrossRef]
- Ise, N.; Kaysuura, T.; Kikuchi, Y.; Miwa, E. Effect of far-infrared radiation on forearm skin blood flow. Ann. Physiol. Anthropol. 1987, 6, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Li, T.T.; Wang, R.; Lou, C.W.; Huang, C.H.; Lin, J.H. Mechanical and physical properties of puncture-resistance plank made of recycled selvages. Fibers Polym. 2013, 14, 258–265. [Google Scholar] [CrossRef]
- Lou, C.W.; Chen, A.P.; Chuang, Y.Y.; Lin, J.Y.; Lin, M.C.; Lin, J.H. Manufacturing techniques and mechanical properties of recycle Kevlar®/PET composite nonwoven. Adv. Mater. Res. 2012, 627, 831–834. [Google Scholar] [CrossRef]
- Lou, C.W.; Lin, C.M.; Hsing, W.H.; Chen, A.P.; Lin, J.H. Manufacturing techniques and electrical properties of conductive fabrics with recycled polypropylene nonwoven selvage. Text. Res. J. 2011, 81, 1331–1343. [Google Scholar]
- Ozen, M.S.; Sancak, E.; Akalin, M. The effect of needle-punched nonwoven fabric thickness on electromagnetic shielding effectiveness. Text. Res. J. 2015, 85, 804–815. [Google Scholar] [CrossRef]
- Rengasamy, R.S.; Wesley, D.S. Study on dynamic needle thread tensions in a single needle lock stitch (SNLS) sewing machine. II. Effect of sewing speed, thickness of fabric plies, thread linear density and pre-tensions of threads. Fibers Polym. 2014, 15, 1773–1778. [Google Scholar] [CrossRef]
- Ghosh, S.; Chapman, L. Effects of fiber blends and needling parameters on needlepunched moldable nonwoven fabric. J. Text. Inst. 2002, 93, 75–87. [Google Scholar] [CrossRef]
- Toyokawa, H.; Matsui, Y.; Uhara, J.; Tsuchiya, H.; Teshima, S.; Nakanishi, H.; Kwon, A.H.; Azuma, Y.; Nagaoka, T.; Ogawa, T. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. 2003, 228, 724–729. [Google Scholar]
- Lou, C.-W.; Huang, C.-H.; Tai, K.-C.; Lin, C.-W.; Lin, J.-H. Recycling polypropylene nonwoven selvages to create far-infrared composite plates. J. Thermoplast. Compos. Mater. 2012, 25, 561–571. [Google Scholar] [CrossRef]
- Tsai, I.J.; Lin, C.W.; Lee, Y.C.; Lou, C.W.; Lei, C.H.; Lin, J.H. Manufacturing process evaluating of pet loose-filled nonwoven thermal insulation. J. Hwa Gang Text. 2007, 14, 1–9. [Google Scholar]
- Yoo, H.; Park, C.M.; Oh, T.J. Investigation of jewelry powder radiating farinfrared rays and the biological effect on human skin. J. Consmet. Sci. 2002, 53, 175–183. [Google Scholar]
- Park, Y.M.; Shin, J.W. Surface properties studies of MPCMs containing fabrics for thermo-regulating textiles. Fibers Polym. 2011, 12, 384–389. [Google Scholar] [CrossRef]
- Leshchinsky, D.; Dechasakulsom, M.; Kaliakin, V.N.; Ling, H.I. Creep and stress relaxation of geogrids. Geosynth. Int. 1997, 4, 463–479. [Google Scholar] [CrossRef]
- Vashi, J.M.; Desai, A.K.; Solanki, C.H. Assessment of reinforced embankment on soft soil with PET and PP geotextile. Int. J. Civ. Struct. Eng. 2012, 2, 828–837. [Google Scholar]
- Hsieh, J.C.; Li, J.H.; Lou, C.W.; Hsieh, C.T.; Hsing, W.H.; Pan, Y.J.; Lin, J.H. Influence of immersion conditions on the tensile strength of recycled Kevlar®/polyester/low-melting-point polyester nonwoven geotextiles through applying statistical analyses. Appl. Sci. 2016, 6, 133. [Google Scholar] [CrossRef]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.-H.; Hsing, Y.-L.; Hsing, W.-H.; Pan, Y.-J.; Hsieh, C.-T.; Lou, C.-W. Feasibility Assessments of the Use of Recycled Fibers in Nonwoven Fabrics. Appl. Sci. 2017, 7, 58. https://doi.org/10.3390/app7010058
Lin J-H, Hsing Y-L, Hsing W-H, Pan Y-J, Hsieh C-T, Lou C-W. Feasibility Assessments of the Use of Recycled Fibers in Nonwoven Fabrics. Applied Sciences. 2017; 7(1):58. https://doi.org/10.3390/app7010058
Chicago/Turabian StyleLin, Jia-Horng, Yan-Lan Hsing, Wen-Hao Hsing, Yi-Jun Pan, Chien-Teng Hsieh, and Ching-Wen Lou. 2017. "Feasibility Assessments of the Use of Recycled Fibers in Nonwoven Fabrics" Applied Sciences 7, no. 1: 58. https://doi.org/10.3390/app7010058
APA StyleLin, J.-H., Hsing, Y.-L., Hsing, W.-H., Pan, Y.-J., Hsieh, C.-T., & Lou, C.-W. (2017). Feasibility Assessments of the Use of Recycled Fibers in Nonwoven Fabrics. Applied Sciences, 7(1), 58. https://doi.org/10.3390/app7010058