The Preparation and Characterization of Immobilized TiO2/PEG by Using DSAT as a Support Binder
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Immobilized TiO2
2.2. XRD Analysis
2.3. SEM Images
2.4. N2 Adsorption-Desorption
2.5. FTIR
2.6. X-ray Photoelectron Spectroscopy (XPS)
2.7. UV–Vis DRS and Visible Light Photodegradation Studies
2.8. Recyclability Study
2.9. Chemical Oxygen Demand Analysis
3. Experimental Section
3.1. Preparation of Immobilized TiO2-PEG
3.2. Characterization Tests of Immobilized TiO2/PEG DSAT
3.3. Washing Process of Immobilized Samples
3.4. Photodegradation of MB Dye
3.5. COD Analysis
3.6. Recyclability Study
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karimi, L.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A.; Mirjalili, M. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric. Appl. Surf. Sci. 2015, 332, 665–673. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. J. Appl. Phys. 2005, 44, 8269. [Google Scholar] [CrossRef]
- Pete, K.Y.; Sillanpää, M.M.; Onyango, M.S.; Aoyi, O. Kinetic modeling of the photocatalytic reduction of Cr(VI) in the presence of dye using composite photocatalyst. J. Chem. Chem. Eng. 2014, 8, 918–924. [Google Scholar]
- McCullagh, C.; Robertson, J.M.; Bahnemann, D.W.; Robertson, P.K. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review. Res. Chem. Intermed. 2007, 33, 359–375. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Xu, P.; Zhao, X.; Liu, Y.; Chao, S. The effect of properties of semiconductor oxide thin films on photocatalytic decomposition of dyeing waste water. Thin Solid Films 1998, 334, 103–108. [Google Scholar] [CrossRef]
- Tennakone, K.; Tilakaratne, C.T.K.; Kottegoda, I.R.M. Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J. Photochem. Photobiol. A 1995, 87, 177–179. [Google Scholar] [CrossRef]
- Tasić, N.; Branković, Z.; Marinković-Stanojević, Z.; Branković, G. Effect of binder molecular weight on morphology of TiO2 films prepared by tape casting and their photovoltaic performance. Sci. Sinter. 2012, 44, 365–372. [Google Scholar] [CrossRef]
- Mukherjee, D. Development of a novel TiO2 polymeric photocatalyst for water purification both under UV and solar illuminations. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2011. [Google Scholar]
- Suzana, Š.; Lidija, Ć.; Ljubas, D.; Svetličić, V.; Houra, I.F.; Tomašić, N. Photocatalytic degradation of Lissamine Green B dye by using nanostructured sol–gel TiO2 films. J. Alloys Compd. 2011, 37, 1153–1160. [Google Scholar]
- Naskar, S.; Pillay, S.A.; Chanda, M. Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet. J. Photochem. Photobiol. A 1998, 113, 257–264. [Google Scholar] [CrossRef]
- Dhananjeyan, M.R.; Mielczarski, E.; Thampi, K.R.; Buffat, P.; Bensimon, M.; Kulik, A.; Kiwi, J. Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. J. Phys. Chem. B 2001, 105, 12046–12055. [Google Scholar] [CrossRef]
- Fabiyi, M.E.; Skelton, R.L. Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads. J. Photochem. Photobiol. A 2000, 132, 121–128. [Google Scholar] [CrossRef]
- Magalhaes, F.; Lago, R.M. Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Sol. Energy 2009, 83, 1521–1526. [Google Scholar] [CrossRef]
- Nagaoka, S.; Hamasaki, Y.; Ishihara, S.I.; Nagata, M.; Iio, K.; Nagasawa, C.; Ihara, H. Preparation of carbon/TiO2 microsphere composites from cellulose/TiO2 microsphere composites and their evaluation. J. Mol. Catal. A 2002, 177, 255–263. [Google Scholar] [CrossRef]
- Sopyan, I.; Watanabe, M.; Murasawa, S.; Hashimoto, K.; Fujishima, A. A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder: Photocatalytic activity and long-term stability. J. Electroanal. Chem. 1996, 415, 183–186. [Google Scholar] [CrossRef]
- Fostier, A.; Pereira, H.; Rath, M.D.S.S.; Guimarães, S. Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere 2008, 72, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, H.; Qian, Z.; Gao, X.; Yi, Q.; Zhang, S.; Yang, M. Preparation of photodegradable polypropylene/clay composites based on nanoscaled TiO2 immobilized organoclay. Polym. Compos. 2009, 30, 543–549. [Google Scholar] [CrossRef]
- Mounir, B.; Pons, M.N.; Zahraa, O.; Yaacoubi, A.; Benhammou, A. Discoloration of a red cationic dye by supported TiO2 photocatalysis. J. Hazard Mater. 2007, 148, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Bai, R. Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights. Sep. Purif. Technol. 2010, 73, 142–150. [Google Scholar] [CrossRef]
- Nawi, M.A.; Ngoh, S.Y.; Zain, S.M. Photoetching of immobilized TiO2-ENR50-PVC composite for improved photocatalytic activity. Int. J. Photoenergy 2012, 2012, 859294. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, S.; Cai, J.; Zhang, L. TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J. Phys. Chem. C 2010, 114, 7806–7811. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.T.; Kim, K.S.; Jeong, S.; Kim, H.Y.; Han, Y.S. Immobilization of TiO2 on an ITO substrate to facilitate the photoelectrochemical degradation of an organic dye pollutant. Electrochim. Acta 2009, 54, 5715–5720. [Google Scholar] [CrossRef]
- Murugan, E.; Rangasamy, R.; Jebaranjitham, J.N. Immobilization of TiO2 and TiO2 [Au] nanoparticles onto the poly (4-vinylpyridine) matrix and their photocatalysis. Adv. Sci. Lett. 2012, 6, 250–256. [Google Scholar] [CrossRef]
- Sriwong, C.; Wongnawa, S.; Patarapaiboolchai, O. Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability. Catal. Commun. 2008, 9, 213–218. [Google Scholar] [CrossRef]
- Zhi, Y.; Keppner, H.; Laub, D.; Mielczarski, E.; Mielczarski, J.; Kiwi-Minsker, L. Photocatalytic discoloration of methyl orange on innovative parylene–TiO2 flexible thin films under simulated sunlight. Appl. Catal. B 2008, 79, 63–71. [Google Scholar]
- Gu, L.; Wang, J.; Qi, R.; Wang, X.; Xu, P.; Han, X. A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. J. Mol. Catal. A 2012, 357, 19–25. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Yang, H.; Xu, S.; Jiang, L.; Dan, Y. Preparation and visible light-induced photo-catalytic activity of H-PVA/ TiO2 composite loaded on glass via sol–gel method. Appl. Surf. Sci. 2014, 292, 978–985. [Google Scholar] [CrossRef]
- Moreno, C.; Preda, J.M.; Predoana, S.; Zaharescu, L.; Anastasescu, M.; Nicolescu, M.; Mihaila, M.M. Effect of polyethylene glycol on porous transparent TiO2 films prepared by sol–gel method. Ceram. Int. 2014, 40, 2209–2220. [Google Scholar] [CrossRef]
- Lei, P.; Wang, F.; Gao, X.; Ding, Y.; Zhang, S.; Zhao, J.; Liu, S.; Yang, M. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J. Hazard Mater. 2012, 227, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, J.; Song, Y.; Xu, S.; Jiang, L.; Dan, Y. Visible light photocatalytic activity of C-PVA/TiO2 composites for degrading rhodamine B. Appl. Surf. Sci. 2015, 324, 645–651. [Google Scholar] [CrossRef]
- Razak, S.; Nawi, M.A.; Haitham, K. Fabrication, characterization and application of a reusable immobilized TiO2–PANI photocatalyst plate for the removal of reactive red 4 dye. Appl. Surf. Sci. 2014, 319, 90–98. [Google Scholar] [CrossRef]
- Zainab, M.; Jeefferie, A.R.; Masrom, A.K.; Rosli, Z.M. Effect of PEG molecular weight on the TiO2 particle structure and TiO2 thin films properties. Adv. Mater. Res. 2012, 364, 76–80. [Google Scholar] [CrossRef]
- Santos, Á.A.; Acevedo-Peña, P.; Córdoba, E.M. Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol. Quim. Nova 2012, 35, 1931–1935. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, K.H.; Dai, Y.M.; Jehng, J.M. Water effect on the surface morphology of TiO2 thin film modified by polyethylene glycol. Appl. Surf. Sci. 2013, 264, 470–475. [Google Scholar] [CrossRef]
- Chang, H.; Jo, E.H.; Jang, H.D.; Kim, T.O. Synthesis of PEG-modified TiO2–InVO4 nanoparticles via combustion method and photocatalytic degradation of methylene blue. Mater. Lett. 2013, 92, 202–205. [Google Scholar] [CrossRef]
- Trapalis, C.; Keivanidis, C.P.; Kordas, G.; Zaharescu, M.; Crisan, M.; Szatvanyi, A.; Gartner, M. TiO2 (Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 2003, 431, 186–190. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, T.; Wang, R.; Lim, T.T. Carbon-sensitized and nitrogen-doped TiO2 for photocatalytic degradation of sulfanilamide under visible-light irradiation. Water Res. 2011, 45, 5015–5026. [Google Scholar] [CrossRef] [PubMed]
- Ismail, W.I.N.W.; Ain, S.K.; Zaharudin, R. New TiO2/DSAT immobilization system for photodegradation of anionic and cationic dyes. Int. J. Photoenergy 2015, 2015, 232741. [Google Scholar] [CrossRef]
- Mukherjee, D.; Barghi, S.; Ray, A.K. Preparation and charaterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light. Processes 2013, 2, 12–23. [Google Scholar] [CrossRef]
- Zaharudin, R.; Ain, S.K.; Bakar, F.; Azami, M.S.; Nawawi, W.I. A comparison study of new TiO2/PEG immobilized techniques under normal and visible light irradiation. MATEC Web Conf. 2016, 47, 05017. [Google Scholar] [CrossRef]
- Hyma, P.; Abbulu, K. Formulation and characterisation of self-microemulsifying drug delivery system of pioglitazone. Biomed. Prev. Nutr. 2013, 3, 345–350. [Google Scholar] [CrossRef]
- Zhang, M.; An, T.; Hu, X.; Wang, C.; Sheng, G.; Fu, J. Preparation of visible light-driven g-C3N4@ZnO hybrid photocatalyst via mechanochemistry. Appl. Catal. A 2014, 260, 215–222. [Google Scholar] [CrossRef]
- Wang, C.C.; Lee, C.K.; Lyu, M.D.; Juang, L.C. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters. Dyes Pigment. 2008, 76, 817–824. [Google Scholar] [CrossRef]
- Rafiee-Pour, H.A.; Hamadanian, M.; Koushali, S.K. Nanocrystalline TiO2 films containing sulfur and gold: Synthesis, characterization and application to immobilize and direct electrochemistry of cytochrome c. Appl. Surf. Sci. 2016, 363, 604–612. [Google Scholar] [CrossRef]
- Kim, D.S.; Kwak, S.Y. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl. Catal. A 2007, 323, 110–118. [Google Scholar] [CrossRef]
- Guo, B.; Liu, Z.; Hong, L.; Jiang, H. Sol gel derived photocatalytic porous TiO2 thin films. Surf. Coat. Technol. 2005, 198, 24–29. [Google Scholar] [CrossRef]
- Li, B.; Huang, H.; Guo, Y.; Zhang, Y. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity. Appl. Surf. Sci. 2015, 353, 1179–1185. [Google Scholar] [CrossRef]
- Tiwari, D.; Lalhriatpuia, C.; Lee, S.M.; Kong, S.H. Efficient application of nano-TiO2 thin films in the photocatalytic removal of Alizarin Yellow from aqueous solutions. Appl. Surf. Sci. 2015, 353, 275–283. [Google Scholar] [CrossRef]
- Rosu, C.M.; Suciu, C.R.; Dreve, S.V.; Danut, T.; Bratu, I.; Indrea, E. The influence of PEG/PPG and of the annealing temperature on TiO2-based layers properties. Rev. Roum. Chim. 2012, 57, 15–21. [Google Scholar]
- Franz, S.; Perego, D.; Marchese, O.; Lucotti, A.; Bestetti, M. Photoactive TiO2 coatings obtained by plasma electrolytic oxidation in refrigerated electrolytes. Appl. Surf. Sci. 2016, 385, 498–505. [Google Scholar] [CrossRef]
- Ain, S.K.; Azami, M.S.; Zaharudin, R.; Bakar, F.; Nawawi, W.I. Photocatalytic study of new immobilized TiO2 technique towards degradation of reactive red 4 dye. MATEC Web of Conf. 2016, 47, 05019. [Google Scholar] [CrossRef]
- Yu, C.; Jimmy, C.Y.; Fan, C.; Wen, H.; Hu, S. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation. Mater. Sci. Eng. 2010, 166, 213–219. [Google Scholar] [CrossRef]
- Li, B.F.; Li, X.Z. The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 2002, 48, 1103–1111. [Google Scholar] [CrossRef]
- Li, B.F.; Li, X.Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl. Catal. A 2002, 228, 15–27. [Google Scholar] [CrossRef]
- Teixeira, S.; Martins, P.M.; Lanceros-Méndez, S.; Kühn, K.; Cuniberti, G. Reusability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly(vinylidene difluoride)-co-trifluoroethylene. Appl. Surf. Sci. 2016, 384, 497–504. [Google Scholar] [CrossRef]
- Jing, L.; Xin, B.; Yuan, F.; Xue, L.; Wang, B.; Fu, H. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J. Phys. Chem. B 2006, 110, 17860–17865. [Google Scholar] [CrossRef] [PubMed]
- Nawawi, W.I.; Ain, S.K.; Zaharudin, R.; Sahid, S. Multi-cycle photodegradation of anionic and cationic dyes by new TiO2/DSAT immobilization system. Appl. Mech. Mater. 2016, 835, 353–358. [Google Scholar] [CrossRef]
TiO2 Sample | Loading (g) | Mode (S a or I b) | Amount of PEG (wt %) | Ratio (TiO2/PEG) | SBET (m2·g−1) | Rate Constant k (min−1) | |
---|---|---|---|---|---|---|---|
Washed | Unwashed | ||||||
Pristine TiO2 | 0.3 | S | 0.00 | 10:0 | 50.00 | 0.048 | - |
TP0 | 0.3 | I | 0.00 | 10:0 | 49.25 | 0.054 | 0.048 |
TP1 | 0.3 | I | 0.05 | 10:0.05 | - | 0.080 | 0.041 |
TP2 | 0.3 | I | 0.10 | 10:0.1 | 88.30 | 0.087 | 0.017 |
TP3 | 0.3 | I | 0.15 | 10:0.15 | - | 0.081 | 0.024 |
TP4 | 0.3 | I | 0.20 | 10:0.2 | - | 0.040 | 0.030 |
TP5 | 0.05 | I | 0.10 | 10:0.1 | - | 0.039 | 0.039 |
TP6 | 0.1 | I | 0.10 | 10:0.1 | - | 0.048 | 0.048 |
TP7 | 0.2 | I | 0.10 | 10:0.1 | - | 0.048 | 0.028 |
TP8 | 0.4 | I | 0.10 | 10:0.1 | - | 0.030 | 0.015 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawawi, W.I.; Zaharudin, R.; Ishak, M.A.M.; Ismail, K.; Zuliahani, A. The Preparation and Characterization of Immobilized TiO2/PEG by Using DSAT as a Support Binder. Appl. Sci. 2017, 7, 24. https://doi.org/10.3390/app7010024
Nawawi WI, Zaharudin R, Ishak MAM, Ismail K, Zuliahani A. The Preparation and Characterization of Immobilized TiO2/PEG by Using DSAT as a Support Binder. Applied Sciences. 2017; 7(1):24. https://doi.org/10.3390/app7010024
Chicago/Turabian StyleNawawi, Wan Izhan, Raihan Zaharudin, Mohd Azlan Mohd Ishak, Khudzir Ismail, and Ahmad Zuliahani. 2017. "The Preparation and Characterization of Immobilized TiO2/PEG by Using DSAT as a Support Binder" Applied Sciences 7, no. 1: 24. https://doi.org/10.3390/app7010024
APA StyleNawawi, W. I., Zaharudin, R., Ishak, M. A. M., Ismail, K., & Zuliahani, A. (2017). The Preparation and Characterization of Immobilized TiO2/PEG by Using DSAT as a Support Binder. Applied Sciences, 7(1), 24. https://doi.org/10.3390/app7010024