# A Chaotic Secure Communication System Design Based on Iterative Learning Control Theory

## Abstract

**:**

## 1. Introduction

- Repetitive action, and
- Iteration.

## 2. The Canonical ILC System

## 3. Chaotic Secure Communication Design Based on ILC Theory

## 4. Numerical Experiments

## 5. Conclusions

## Acknowledgments

## Conflicts of Interest

## Abbreviations

ILC | Iterative Leaning Control |

ZOH | Zero-Order-Holder |

## References

- Bristow, D.A.; Tharayil, M.; Alleyne, A.G. A survey of iterative learning control. IEEE Control Syst.
**2006**, 26, 96–114. [Google Scholar] [CrossRef] - Ahn, H.S.; Chen, Y.; Moore, K.L. Iterative learning control: Brief survey and categorization. IEEE Tran. Syst. Man Cybern. C Appl. Rev.
**2007**, 37, 1099. [Google Scholar] [CrossRef] - Chen, W.; Chen, Y.Q.; Yeh, C.P. Robust iterative learning control via continuous sliding-mode technique with validation on an SRV02 rotary plant. Mechatronics
**2012**, 22, 588–593. [Google Scholar] [CrossRef] - Zhang, C.L.; Li, J.M. Adaptive iterative learning control of non-uniform trajectory tracking for strict feedback nonlinear time-varying systems. Int. J. Autom. Comput.
**2014**, 11, 621–626. [Google Scholar] [CrossRef] - Madady, A. An extended PID type iterative learning control. Int. J. Control Autom. Syst.
**2013**, 11, 470–481. [Google Scholar] [CrossRef] - Bouakrif, F.; Boukhetala, D.; Boudjema, F. Velocity observer-based iterative learning control for robot manipulators. Int. J. Syst. Sci.
**2013**, 44, 214–222. [Google Scholar] [CrossRef] - Chen, Y.; Wen, C. Iterative Learning Control: Convergence, Robustness and Applications; Springer: Heidelberg, Germany, 1999. [Google Scholar]
- Xu, J.X.; Yan, R.; Chen, Y.Q. On initial conditions in iterative learning control. IEEE Trans. Autom. Control
**2005**, 50, 1349–1354. [Google Scholar] - Xu, J.X.; Tan, Y. Linear and Nonlinear Iterative Learning Control; Springer: Heidelberg, Germany, 2003; Volume 291. [Google Scholar]
- Tayebi, A. Adaptive iterative learning control for robot manipulators. Automatica
**2004**, 40, 1195–1203. [Google Scholar] [CrossRef] - Zapateiro, M.; Vidal, Y.; Acho, L. A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded messages. Commun. Nonlinear Sci. Numer. Simul.
**2014**, 19, 991–1003. [Google Scholar] [CrossRef] - Yang, J.; Chen, Y.; Zhu, F. Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication. Neurocomputing
**2015**, 167, 587–595. [Google Scholar] [CrossRef] - Zapateiro De la Hoz, M.; Acho, L.; Vidal, Y. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers. Sci. World J.
**2015**, 2015, 123080. [Google Scholar] [CrossRef] [PubMed] - Acho, L. A discrete-time chaotic oscillator based on the logistic map: A secure communication scheme and a simple experiment using Arduino. J. Frankl. Inst.
**2015**, 352, 3113–3121. [Google Scholar] [CrossRef] [Green Version] - Yang, T. A survey of chaotic secure communication systems. Int. J. Comput. Cognit.
**2004**, 2, 81–130. [Google Scholar] - Ogata, K. Discrete-Time Control Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1995; Volume 2. [Google Scholar]
- Xu, D.; Jiang, B.; Shi, P. Adaptive observer based data-driven control for nonlinear discrete-time processes. IEEE Trans. Autom. Sci. Eng.
**2014**, 11, 1037–1045. [Google Scholar] [CrossRef]

**Figure 2.**Numerical results: red-dotted line is $\theta \left(t\right)$ and the other one is $\widehat{\theta}\left(t\right)$.

**Figure 3.**Numerical results: red-dotted line is ${x}_{r}\left(t\right)$ and the other one is ${x}_{i}\left(t\right)$.

**Figure 6.**Numerical results for the noisy case: red-dotted line is $\theta \left(t\right)$ and the other one is $\widehat{\theta}\left(t\right)$.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Acho, L.
A Chaotic Secure Communication System Design Based on Iterative Learning Control Theory. *Appl. Sci.* **2016**, *6*, 311.
https://doi.org/10.3390/app6100311

**AMA Style**

Acho L.
A Chaotic Secure Communication System Design Based on Iterative Learning Control Theory. *Applied Sciences*. 2016; 6(10):311.
https://doi.org/10.3390/app6100311

**Chicago/Turabian Style**

Acho, Leonardo.
2016. "A Chaotic Secure Communication System Design Based on Iterative Learning Control Theory" *Applied Sciences* 6, no. 10: 311.
https://doi.org/10.3390/app6100311