Analysis of the Effects of Neuromodulation Suit Application on Muscle Contractile Properties in an Elite Football Player: A Case Study
Abstract
1. Introduction
2. Materials and Methods
Experimental Protocol
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howland, R.H. Vagus Nerve Stimulation. Curr. Behav. Neurosci. Rep. 2014, 1, 64–73. [Google Scholar] [CrossRef]
- He, B.; Lu, Z.; He, W.; Huang, B.; Jiang, H. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases. Cardiovasc. Ther. 2016, 34, 167–171. [Google Scholar] [CrossRef]
- Chakravarthy, K.; Chaudhry, H.; Williams, K.; Christo, P.J. Review of the Uses of Vagal Nerve Stimulation in Chronic Pain Management. Curr. Pain Headache Rep. 2015, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Beghi, E.; Fazekas, F.; Varga, T.; Christoforidi, K.A.; Sipido, E.; Bassetti, C.L.; Vos, T.; Feigin, V.L. The Burden of Neurological Diseases in Europe: An Analysis for the Global Burden of Disease Study 2017. Lancet Public Health 2020, 5, e551–e567. [Google Scholar] [CrossRef] [PubMed]
- Hedin, H.; Wong, C.; Sjödén, A. The Effects of Using an Electrodress (Mollii®) to Reduce Spasticity and Enhance Functioning in Children with Cerebral Palsy: A Pilot Study. Eur. J. Physiother. 2020, 24, 134–143. [Google Scholar] [CrossRef]
- García-Alén, L.; Ros-Alsina, A.; Sistach-Bosch, L.; Wright, M.; Kumru, H. Noninvasive Electromagnetic Neuromodulation of the Central and Peripheral Nervous System for Upper-Limb Motor Strength and Functionality in Individuals with Cervical Spinal Cord Injury: A Systematic Review and Meta-Analysis. Sensors 2024, 24, 4695. [Google Scholar] [CrossRef]
- Won, S.M.; Song, E.; Reeder, J.T.; Rogers, J.A. Emerging Modalities and Implantable Technologies for Neuromodulation. Cell 2020, 181, 115–135. [Google Scholar] [CrossRef]
- Lacour, S.P.; Courtine, G.; Guck, J. Materials and Technologies for Soft Implantable Neuroprostheses. Nat. Rev. Mater. 2016, 1, 16063. [Google Scholar] [CrossRef]
- Bari, A.; Pouratian, N. Brain Imaging Correlates of Peripheral Nerve Stimulation. Surg. Neurol. Int. 2012, 3, S260. [Google Scholar] [CrossRef]
- Pennati, G.V. Theoretical Framework for Clinical Applications of Mollii; Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine: Stockholm, Sweden, 2017. [Google Scholar]
- Rubio-Zarapuz, A.; Apolo-Arenas, M.D.; Tomas-Carus, P.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J.; Parraca, J.A. Comparative Analysis of Psychophysiological Responses in Fibromyalgia Patients: Evaluating Neuromodulation Alone, Neuromodulation Combined with Virtual Reality, and Exercise Interventions. Medicina 2024, 60, 404. [Google Scholar] [CrossRef]
- Mattar, J.G.; Chalah, M.A.; Ouerchefani, N.; Sorel, M.; Le Guilloux, J.; Lefaucheur, J.P.; Lahoud, G.N.A.; Ayache, S.S. The Effect of the EXOPULSE Mollii Suit on Pain and Fibromyalgia-Related Symptoms: A Randomized Sham-Controlled Crossover Trial. Eur. J. Pain 2025, 29, e4729. [Google Scholar] [CrossRef]
- Ayache, S.S.; Mattar, J.G.; Créange, A.; Abdellaoui, M.; Zedet, M.; Lefaucheur, J.-P.; Megherbi, H.; Khaled, H.; Lahoud, G.N.A.; Chalah, M.A. The Effect of the EXOPULSE Mollii Suit on Motor Functions in Patients with Multiple Sclerosis: A Randomized Sham-Controlled Crossover Trial. Mult. Scler. J. Exp. Transl. Clin. 2025, 11, 20552173251348304. [Google Scholar] [CrossRef]
- Čular, D.; Babić, M.; Zubac, D.; Kezić, A.; Macan, I.; Peyré-Tartaruga, L.A.; Ceccarini, F.; Padulo, J. Tensiomyography: From muscle assessment to talent identification tool. Front. Physiol. 2023, 14, 1163078. [Google Scholar] [CrossRef]
- Martín-Rodríguez, S.; Loturco, I.; Hunter, A.M.; Rodríguez-Ruiz, D.; Munguia-Izquierdo, D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: A systematic review. J. Strength Cond. Res. 2017, 31, 3524–3536. [Google Scholar] [CrossRef] [PubMed]
- Cuba-Dorado, A.; Álvarez-Yates, T.; Iglesias-Caamaño, M.; Carballo-López, J.; Abalo-Rey, J.M.; Riveiro-Bozada, A.; Garcia-Remeseiro, T.; García-García, O. Neuromuscular Characteristics of Elite and Age Groups Triathletes from World Multisport Championships. J. Hum. Sport Exerc. 2026, 21, 200–213. [Google Scholar] [CrossRef]
- Petri, C.; Campa, F.; Holway, F.; Pengue, L.; Arrones, L.S. ISAK-Based Anthropometric Standards for Elite Male and Female Soccer Players. Sports 2024, 12, 69. [Google Scholar] [CrossRef]
- Spehnjak, M.; Gušić, M.; Molnar, S.; Baić, M.; Andrašić, S.; Selimi, M.; Mačak, D.; Madić, D.M.; Fišer, S.Ž.; Sporiš, G.; et al. Body Composition in Elite Soccer Players from Youth to Senior Squad. Int. J. Environ. Res. Public Health 2021, 18, 4982. [Google Scholar] [CrossRef] [PubMed]
- Wittich, A.; Oliveri, M.B.; Rotemberg, E.; Mautalen, C. Body Composition of Professional Football (Soccer) Players Determined by Dual X-Ray Absorptiometry. J. Clin. Densitom. 2001, 4, 51–55. [Google Scholar] [CrossRef]
- Forrester, S.E.; Pain, M.T. A Combined Muscle Model and Wavelet Approach to Interpreting the Surface EMG Signals from Maximal Dynamic Knee Extensions. J. Appl. Biomech. 2010, 26, 62–72. [Google Scholar] [CrossRef]
- Enocson, A.; Berg, H.E.; Vargas, R.; Jenner, G.; Tesch, P.A. Signal Intensity of MR-Images of Thigh Muscles Following Acute Open- and Closed-Chain Kinetic Knee Extensor Exercise. Eur. J. Appl. Physiol. 2005, 94, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, R.J.; Whitman, K.M.; Johnston, R.M. Changes in Quadriceps Femoris Muscle Strength Using Isometric Exercise versus Electrical Stimulation. J. Orthop. Sports Phys. Ther. 1987, 8, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Dervišević, E.; Bilban, M.; Valenčic, V. The Influence of Low-Frequency Electrostimulation and Isokinetic Training on the Maximal Strength of M. Quadriceps Femoris. Isokinet. Exerc. Sci. 2002, 10, 203–209. [Google Scholar] [CrossRef]
- Choi, S.J.; Widrick, J.J. Combined Effects of Fatigue and Eccentric Damage on Muscle Power. J. Appl. Physiol. 2009, 107, 1156–1164. [Google Scholar] [CrossRef]
- Pajovic, L.; Toskic, L.; Stankovic, V.; Lilic, L.; Cicovic, B. Muscle contractile properties measured by the tensiomyography (TMG) method in top—Level football players of different playing positions. The case of Serbian super League. Int. J. Environ. Res. Public Health 2023, 20, 924. [Google Scholar] [CrossRef]
- Decker, M.; Griffin, L.; Abraham, L.; Brandt, L. Alternating Stimulation of Synergistic Muscles during Functional Electrical Stimulation Cycling Improves Endurance in Persons with Spinal Cord Injury. J. Electromyogr. Kinesiol. 2010, 20, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Garnier, Y.M.; Lepers, R.; Canepa, P.; Martin, A.; Paizis, C. Effect of the Knee and Hip Angles on Knee Extensor Torque: Neural, Architectural, and Mechanical Considerations. Front. Physiol. 2022, 12, 789867. [Google Scholar] [CrossRef] [PubMed]
- Toskić, L.; Dopsaj, M.; Stanković, V.; Marković, M. Concurrent and Predictive Validity of Isokinetic Dynamometry and Tensiomyography in Differently Trained Women and Men. Isokinet. Exerc. Sci. 2019, 27, 31–39. [Google Scholar] [CrossRef]
- Macgregor, L.J.; Hunter, A.M.; Orizio, C.; Fairweather, M.M.; Ditroilo, M. Assessment of skeletal muscle contractile properties by radial displacement: The case for tensiomyography. Sports Med. 2018, 48, 1607–1620. [Google Scholar] [CrossRef]
- Alvarez-Diaz, P.; Alentorn-Geli, E.; Ramon, S.; Marin, M.; Steinbacher, G.; Rius, M.; Seijas, R.; Ballester, J.; Cugat, R. Effects of anterior cruciate ligament reconstruction on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3407–3413. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Edgerton, V.R. Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. Med. 2015, 58, 225–231. [Google Scholar] [CrossRef]


| Gender | Age | BH (cm) | BW (kg) | MM (%) | BF (%) |
|---|---|---|---|---|---|
| Male | 18.8 | 187.00 | 77.90 | 50.90 | 9.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jeleskovic, E.; Covic, N.; Peric, I. Analysis of the Effects of Neuromodulation Suit Application on Muscle Contractile Properties in an Elite Football Player: A Case Study. Appl. Sci. 2026, 16, 1155. https://doi.org/10.3390/app16031155
Jeleskovic E, Covic N, Peric I. Analysis of the Effects of Neuromodulation Suit Application on Muscle Contractile Properties in an Elite Football Player: A Case Study. Applied Sciences. 2026; 16(3):1155. https://doi.org/10.3390/app16031155
Chicago/Turabian StyleJeleskovic, Eldin, Nedim Covic, and Ivan Peric. 2026. "Analysis of the Effects of Neuromodulation Suit Application on Muscle Contractile Properties in an Elite Football Player: A Case Study" Applied Sciences 16, no. 3: 1155. https://doi.org/10.3390/app16031155
APA StyleJeleskovic, E., Covic, N., & Peric, I. (2026). Analysis of the Effects of Neuromodulation Suit Application on Muscle Contractile Properties in an Elite Football Player: A Case Study. Applied Sciences, 16(3), 1155. https://doi.org/10.3390/app16031155

