Force-Velocity Profile in Middle- and Long-Distance Athletes: Sex Effect and Impact on Endurance Performance Determinants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Procedure
Squat-Jump F–V Profile Evaluation
2.4. F–V Profile Analyses
2.5. RE and Maximal Incremental Running Tests
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balsalobre-Fernández, C.; Santos-Concejero, J.; Grivas, G.V. Effects of Strength Training on Running Economy in Highly Trained Runners: A Systematic Review with Meta-Analysis of Controlled Trials. J. Strength Cond. Res. 2016, 30, 2361–2368. [Google Scholar] [CrossRef] [PubMed]
- Cormier, P.; Freitas, T.T.; Loturco, I.; Turner, A.; Virgile, A.; Haff, G.G.; Blazevich, A.J.; Agar-Newman, D.; Henneberry, M.; Baker, D.G.; et al. Within Session Exercise Sequencing During Programming for Complex Training: Historical Perspectives, Terminology, and Training Considerations. Sports Med. 2022, 52, 2371–2389. [Google Scholar] [CrossRef] [PubMed]
- Saunders, P.U.; Telford, R.D.; Pyne, D.B.; Peltola, E.M.; Cunningham, R.B.; Gore, C.J.; Hawley, J.A. Short-Term Plyometric Training Improves Running Economy in Highly Trained Middle and Long Distance Runners. J. Strength Cond. Res. 2006, 20, 947. [Google Scholar] [CrossRef]
- Paavolainen, L.; Häkkinen, K.; Hämäläinen, I.; Nummela, A.; Rusko, H. Explosive-Strength Training Improves 5-Km Running Time by Improving Running Economy and Muscle Power. J. Appl. Physiol. 1999, 86, 1527–1533. [Google Scholar] [CrossRef]
- Millet, G.P.; Jaouen, B.; Borrani, F.; Candau, R. Effects of Concurrent Endurance and Strength Training on Running Economy and &OV0312;O2 Kinetics. Med. Sci. Sports Exerc. 2002, 34, 1351–1359. [Google Scholar] [CrossRef]
- Hamilton, R.J.; Paton, C.D.; Hopkins, W.G. Effect of High-Intensity Resistance Training on Performance of Competitive Distance Runners. Int. J. Sports Physiol. Perform. 2006, 1, 40–49. [Google Scholar] [CrossRef]
- Fletcher, J.R.; MacIntosh, B.R. Running Economy from a Muscle Energetics Perspective. Front. Physiol. 2017, 8, 433. [Google Scholar] [CrossRef] [PubMed]
- Snyder, K.R.; Earl, J.E.; O’Connor, K.M.; Ebersole, K.T. Resistance training is accompanied by increases in hip strength and changes in lower extremity biomechanics during running. Clin. Biomech. 2009, 24, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, N.; Taboga, P.; Rejc, E.; Lazzer, S. Effects of strength, explosive and plyometric training on energy cost of running in ultra-endurance athletes. Eur. J. Sport Sci. 2017, 17, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; Hansen, K.T. Strength and Power Predictors of Sports Speed. J. Strength Cond. Res. 2005, 19, 349. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Sleivert, G. Challenges in Understanding the Influence of Maximal Power Training on Improving Athletic Performance. Sports Med. 2005, 35, 213–234. [Google Scholar] [CrossRef]
- Hudgins, B.; Scharfenberg, J.; Triplett, N.T.; McBride, J.M. Relationship Between Jumping Ability and Running Performance in Events of Varying Distance. J. Strength Cond. Res. 2013, 27, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.V. The heat of shortening and dynamic constants of musk. Proc. Roy. Soc. Lond. 1938, 8, I36–I195. [Google Scholar]
- Morin, J.-B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Giroux, C.; Rabita, G.; Chollet, D.; Guilhem, G. Optimal Balance Between Force and Velocity Differs Among World-Class Athletes. J. Appl. Biomech. 2016, 32, 59–68. [Google Scholar] [CrossRef]
- Muñoz de la Cruz, V.; Carranza, V.R.; González Ravé, J.M. Road to Paris 2024: Force-Velocity Profile in Different Speed Climbers’ Abilities. Biol. Sport 2024, 41, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Levernier, G.; Samozino, P.; Laffaye, G. Force-Velocity-Power Profile in High-Elite Boulder, Lead, and Speed Climber Competitors. Int. J. Sports Physiol. Perform. 2020, 15, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Hicks, D.S.; Drummond, C.; Williams, K.J.; Tillaar, R. van den Force-Velocity Profiling in Club-Based Field Hockey Players: Analyzing the Relationships between Mechanical Characteristics, Sex, and Positional Demands. J. Sports Sci. Med. 2023, 22, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Rejc, E.; Enrico Prampero, P.D.I.; BELLr, A.; Morin, J. Optimal Force-Velocity Profile in Ballistic Move-Ments-Altius\ Citius or Fortius? Med. Sei. Sports Exere 2012, 44, 313–322. [Google Scholar] [CrossRef]
- Lindberg, K.; Solberg, P.; Rønnestad, B.R.; Frank, M.T.; Larsen, T.; Abusdal, G.; Berntsen, S.; Paulsen, G.; Sveen, O.; Seynnes, O.; et al. Should We Individualize Training Based on Force-velocity Profiling to Improve Physical Performance in Athletes? Scand. J. Med. Sci. Sports 2021, 31, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- Escobar Álvarez, J.A.; Fuentes García, J.P.; Da Conceição, F.A.; Jiménez-Reyes, P. Individualized Training Based on Force–Velocity Profiling During Jumping in Ballet Dancers. Int. J. Sports Physiol. Perform. 2020, 15, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.; Waldron, M.; Cushion, E.; Tallent, J. Optimised Force-Velocity Training during Pre-Season Enhances Physical Performance in Professional Rugby League Players. J. Sports Sci. 2021, 39, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Zabaloy, S.; Pareja-Blanco, F.; Giráldez, J.C.; Rasmussen, J.I.; González, J.G. Effects of Individualised Training Programmes Based on the Force-Velocity Imbalance on Physical Performance in Rugby Players. Isokinet. Exerc. Sci. 2020, 28, 181–190. [Google Scholar] [CrossRef]
- Manson, S.A.; Low, C.; Legg, H.; Patterson, S.D.; Meylan, C. Vertical Force-Velocity Profiling and Relationship to Sprinting in Elite Female Soccer Players. Int. J. Sports Med. 2021, 42, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Edouard, P.; Sangnier, S.; Brughelli, M.; Gimenez, P.; Morin, J.-B. Force-Velocity Profile: Imbalance Determination and Effect on Lower Limb Ballistic Performance. Int. J. Sports Med. 2013, 35, 505–510. [Google Scholar] [CrossRef]
- Jones, A.M.; Doust, J.H. A 1% Treadmill Grade Most Accurately Reflects the Energetic Cost of Outdoor Running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef]
- Winter, E.M.; Jones, A.M.; Davison, R.; Bromley, P.D.; Mercer, T.H. Sport and exercise physiology testing. In The British Asso of Sport and Exer Scien Guide; Routledge: London, UK, 2008; pp. 101–111. [Google Scholar]
- Belli, A.; Lacour, J.R.; Komi, P.V.; Candau, R.; Denis, C. Mechanical Step Variability during Treadmill Running. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 510–517. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; García-Ramos, A.; Cuadrado-Peñafiel, V.; Brughelli, M.; Morin, J.-B. Relationship between Vertical and Horizontal Force-Velocity-Power Profiles in Various Sports and Levels of Practice. PeerJ 2018, 6, e5937. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L. Sex differences in skeletal muscle fiber types: A meta-analysis. Clin. Anat. 2024, 37, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; Sandbakk, Ø.; Enoksen, E.; Seiler, S.; Tønnessen, E. Crossing the Golden Training Divide: The Science and Practice of Training World-Class 800- and 1500-m Runners. Sports Med. 2021, 51, 1835–1854. [Google Scholar] [CrossRef]
- Haugen, T.; Sandbakk, Ø.; Seiler, S.; Tønnessen, E. The Training Characteristics of World-Class Distance Runners: An Integration of Scientific Literature and Results-Proven Practice. Sports Med.–Open 2022, 8, 46. [Google Scholar] [CrossRef]
- Bellinger, P.; Bourne, M.N.; Duhig, S.; Lievens, E.; Kennedy, B.; Martin, A.; Cooper, C.; Tredrea, M.; Rice, H.; Derave, W.; et al. Relationships between Lower Limb Muscle Characteristics and Force–Velocity Profiles Derived during Sprinting and Jumping. Med. Sci. Sports Exerc. 2021, 53, 1400–1411. [Google Scholar] [CrossRef]
- Bonacci, J.; Chapman, A.; Blanch, P.; Vicenzino, B. Neuromuscular Adaptations to Training, Injury and Passive Interventions. Sports Med. 2009, 39, 903–921. [Google Scholar] [CrossRef]
- Dumke, C.L.; Pfaffenroth, C.M.; McBride, J.M.; McCauley, G.O. Relationship Between Muscle Strength, Power and Stiffness and Running Economy in Trained Male Runners. Int. J. Sports Physiol. Perform. 2010, 5, 249–261. [Google Scholar] [CrossRef]
- Blagrove, R.C.; Howatson, G.; Hayes, P.R. Effects of Strength Training on the Physiological Determinants of Middle- and Long-Distance Running Performance: A Systematic Review. Sports Med. 2018, 48, 1117–1149. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Soriano-Maldonado, A.; Conceição, F.; Jiménez-Reyes, P.; Rodríguez-Pérez, M.A. Association of the Vertical and Horizontal Force-velocity Profile and Acceleration with Change of Direction Ability in Various Sports. Eur. J. Sport Sci. 2021, 21, 1659–1667. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Newton, R.U.; Shi, Y.; Sutton, D.; Ding, H. Correlation of Eccentric Strength, Reactive Strength, and Leg Stiffness With Running Economy in Well-Trained Distance Runners. J. Strength Cond. Res. 2021, 35, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Lum, D.; Chua, K.; Rashid Aziz, A. Isometric Mid-Thigh Pull Force-Time Characteristics: A Good Indicator of Running Performance. J. Trainology 2020, 9, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Morin, J.-B.; Hintzy, F.; Belli, A. Jumping Ability: A Theoretical Integrative Approach. J Theor Biol 2010, 264, 11–18. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Lindberg, K.; Bjørnsen, T.; Solberg, P.; Paulsen, G. The Force–Velocity Profile for Jumping: What It Is and What It Is Not. Med. Sci. Sports Exerc. 2023, 55, 1241–1249. [Google Scholar] [CrossRef]
- Moore, I.S. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy. Sports Med. 2016, 46, 793–807. [Google Scholar] [CrossRef]
Age (y) | Height (m) | Body Mass (kg) | WA Points | VO2max (mL/kg/min) | ||
---|---|---|---|---|---|---|
Men n = 18 | Middle-distance athletes. n = 6 | 25.7 ± 8.6 | 1.76 ± 0.06 | 63.6 ± 5.0 | 821 ± 156 | 64.3 ± 6.7 |
Long-distance athletes. n = 12 | 27.7 ± 5.7 | 1.74 ± 0.06 | 60.5 ± 4.7 | 889 ± 61.8 | 64.4 ± 6.2 | |
Women n = 21 | Middle-distance athletes. n = 7 | 23.4 ± 5.4 | 1.64 ± 0.05 | 52.6 ± 6.7 | 824 ±164 | 56.4 ± 5.4 |
Long-distance athletes. n = 14 | 24.9 ± 4.6 | 1.67 ± 0.07 | 52.8 ± 4.4 | 848 ± 220 | 52.6 ± 6.2 |
F0 (N·kg−1) | V0 (m·s−1) | Pmax (W·kg−1) | Jump Height (cm) | FVimb | ||
---|---|---|---|---|---|---|
Men n = 18 | Middle-distance athletes. n = 6 | 29.80 ± 5.02 | 2.80 ± 0.65 | 20.50 ± 4.26 | 28.10 ± 5.43 | 79.3% |
Long-distance athletes. n = 12 | 30.80 ± 5.66 | 2.64 ± 0.59 | 19.70 ± 2.87 | 24.10 ± 2.23 | 81.3% | |
Women n = 21 | Middle-distance athletes. n = 7 | 30.40 ± 6.35 | 2.97 ± 1.20 | 21.20 ± 4.78 | 26.00 ± 4.59 | 84.3% |
Long-distance athletes. n = 14 | 29.60 ± 5.18 | 2.39 ± 1.02 | 15.70 ± 2.78 | 20.10 ± 3.39 | 79.3% |
F0 | V0 | Pmax | Jump height | FVimb | ||
---|---|---|---|---|---|---|
Middle-distance men × long-distance men | Md (CI) | 0.983 (−4.640, 6.606) | −0.156 (−1.064,0.752) | −0.733 (−4.270, 2.804) | −0.040 −0.077, −0.002) | 2.000 (−36.344, 40.344) |
p | 0.984 | 0.985 | 0.974 | 0.163 | 1.000 | |
d | 0.177 | −0.174 | −0.211 | −1.067 | 0.053 | |
Middle-distance women × long-distance women | Md (CI) | −0.832 (−6.104, 4.440) | −0.581 (−1.432,0.271) | −5.488 (−8.804, 2.172) | −0.059 (−0.094, −0.024) | 9.176 (−26.776, 45.128) |
p | 0.988 | 0.516 | 0.010 ** | 0.009 ** | 0.954 | |
d | −0.150 | −0.650 | −1.577 | −1.597 | 0.243 | |
Middle-distance men × middle-distance women | Md (CI) | −0.619 (−6.876, 5.638) | −0.170 (−1.181, 0.840) | −0.690 (−4.626, 3.245) | 0.021 (−0.021, 0.063) | −4.952 (−47.617, 37.713) |
p | 0.997 | 0.986 | 0.984 | 0.744 | 0.995 | |
d | −0.112 | −0.190 | −0.198 | 0.563 | −0.131 | |
Long-distance men × long-distance women | Md (CI) | 1.196 (−3.306, 5.698) | 0.255 (−0.472, 0.982) | 4.064 (1.232, 6.896) | 0.040 (0.010, 0.071) | −12.128 (−42.828, 18.571) |
p | 0.949 | 0.892 | 0.030 * | 0.047 * | 0.853 | |
d | 0.216 | 0.285 | 1.168 | 1.093 | −0.321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz de la Cruz, V.; González-Mohíno, F.; Rodríguez-Barbero, S.; Valero, F.; González-Ravé, J.M. Force-Velocity Profile in Middle- and Long-Distance Athletes: Sex Effect and Impact on Endurance Performance Determinants. Appl. Sci. 2025, 15, 1249. https://doi.org/10.3390/app15031249
Muñoz de la Cruz V, González-Mohíno F, Rodríguez-Barbero S, Valero F, González-Ravé JM. Force-Velocity Profile in Middle- and Long-Distance Athletes: Sex Effect and Impact on Endurance Performance Determinants. Applied Sciences. 2025; 15(3):1249. https://doi.org/10.3390/app15031249
Chicago/Turabian StyleMuñoz de la Cruz, Violeta, Fernando González-Mohíno, Sergio Rodríguez-Barbero, Fernando Valero, and José María González-Ravé. 2025. "Force-Velocity Profile in Middle- and Long-Distance Athletes: Sex Effect and Impact on Endurance Performance Determinants" Applied Sciences 15, no. 3: 1249. https://doi.org/10.3390/app15031249
APA StyleMuñoz de la Cruz, V., González-Mohíno, F., Rodríguez-Barbero, S., Valero, F., & González-Ravé, J. M. (2025). Force-Velocity Profile in Middle- and Long-Distance Athletes: Sex Effect and Impact on Endurance Performance Determinants. Applied Sciences, 15(3), 1249. https://doi.org/10.3390/app15031249