Intake of Phytoestrogens and Estrogenic Effect of the Diet of Female University Students in Mexico
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olea, N.; Pazos, P.; Fernández, M.F.; Rivas, A.; Olea-Serrano, F.; Pedraza, V. Phyto and mycoestrogens (Xenoestrogens) as a preventable cause of breast cancer. Med. Biol. Environ. Int. J. 1999, 27, 55–60. [Google Scholar]
- Yildiz, F. Phytoestrogens in Functional Foods; CRC Press: Boca Raton, FL, USA, 2005; pp. 210–211. ISBN 978-1-57444-508. [Google Scholar]
- Hernandez-Elizondo, J.; Monteagudo, C.; Murcia, M.A.; Olea, N.; Olea-Serrano, F.; Mariscal-Arcas, M. Assessment of the estrogenicity of the diet of a healthy female Spanish population based on its isoflavone content. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-López, I.; Yago-Aragón, M.; Salas-Huetos, A.; Tresserra-Rimbau, A.; Hurtado-Barroso, S. Effects of Dietary Phytoestrogens on Hormones throughout a Human Lifespan: A Review. Nutrients 2020, 12, 2456. [Google Scholar] [CrossRef] [PubMed]
- Heras-González, L.; Espino, D.; Jimenez-Casquet, M.J.; Lopez-Moro, A.; Olea-Serrano, F.; Mariscal-Arcas, M. Influence of BPA exposure, measured in saliva, on childhood weight. Front. Endocrinol. 2022, 13, 1040583. [Google Scholar] [CrossRef]
- Forslund, L.C.; Andersson, H.C. Phytoestrogens in Foods on the Nordic Market: A Literature Review on Occurrence and Levels; Nordic Council of Ministers, Nordic Council of Ministers Secretariat: Copenhagen, Denmark, 2017; ISBN 978-92-893-5047-1. [Google Scholar] [CrossRef]
- Bhakta, D.; Higgins, C.D.; Sevak, L.; Mangtani, P.; Adlercreutz, H.; McMichael, A.J.; Dos Santos Silva, I. Phyto-oestrogen intake and plasma concentrations in South Asian and native British women resident in England. Br. J. Nutr. 2006, 95, 1150–1158. [Google Scholar] [CrossRef]
- Kaldas, R.S.; Hughes, C.L., Jr. Reproductive and general metabolic effects of phytoestrogens in mammals. Reprod. Toxicol. 1989, 3, 81–89. [Google Scholar] [CrossRef]
- Wagner, J.; Jiang, L.; Lehmann, L. Phytoestrogens modulate the expression of 17alpha-estradiol metabolizing enzymes in cultured MCF-7 cells. Adv. Exp. Med. Biol. 2008, 617, 625–632. [Google Scholar] [CrossRef]
- Rietjens, I.M.C.M.; Louisse, J.; Beekmann, K. The potential health effects of dietary phytoestrogens. Br. J. Pharmacol. 2017, 174, 1263–1280. [Google Scholar] [CrossRef]
- Mäkelä, S.; Santti, R.; Salo, L.; McLachlan, J.A. Phytoestrogens are partial estrogen agonists in the adult male mouse. Environ. Health Perspect. 1995, 103 (Suppl. S7), 123–127. [Google Scholar] [CrossRef]
- Saarinen, N.M.; Huovinen, R.; Wärri, A.; I Mäkelä, S.; Valentín-Blasini, L.; Sjöholm, R.; Ammälä, J.; Lehtilä, R.; Eckerman, C.; Collan, Y.U.; et al. Enterolactone inhibits the growth of 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in the rat. Mol. Cancer Ther. 2002, 1, 869–876. [Google Scholar] [PubMed]
- Jiang, Q.; Payton-Stewart, F.; Elliott, S.; Driver, J.; Rhodes, L.V.; Zhang, Q.; Zheng, S.; Bhatnagar, D.; Boue, S.M.; Collins-Burow, B.M.; et al. Effects of 7-O substitutions on estrogenic and anti-estrogenic activities of daidzein analogues in MCF-7 breast cancer cells. J. Med. Chem. 2010, 53, 6153–6163. [Google Scholar] [CrossRef] [PubMed]
- Heras-González, L.; Latorre, J.A.; Martinez-Bebia, M.; Espino, D.; Olea-Serrano, F.; Mariscal-Arcas, M. The relationship of obesity with lifestyle and dietary exposure to endocrine-disrupting chemicals. Food Chem. Toxicol. 2020, 136, 110983. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, M.; Olea, N.; Brotons, J.A.; Olea-Serrano, M.F.; Ruiz de Almodovar, J.M.; Pedraza, V. The E-screen assay: A comparison of different MCF7 cell stocks. Environ. Health Perspect. 1995, 103, 844–850. [Google Scholar] [CrossRef]
- Olea, N.; Olea-Serrano, M.F. Oestrogens and the environment. Eur. J. Cancer Prev. 1996, 5, 491–496. [Google Scholar]
- Xin, M.; Wang, Y.; Ren, Q.; Guo, Y. Formononetin and metformin act synergistically to inhibit growth of MCF-7 breast cancer cells in vitro. Biomed. Pharmacother. 2019, 109, 2084–2089. [Google Scholar] [CrossRef]
- Albertazzi, P.; Purdie, D.W. Reprint of The nature and utility of the phytoestrogens: A review of the evidence. Maturitas 2008, 61, 214–226. [Google Scholar] [CrossRef]
- Kwack, S.J.; Kim, K.B.; Kim, H.S.; Yoon, K.S.; Lee, B.M. Risk assessment of soybean-based phytoestrogens. J. Toxicol. Environ. Health A 2009, 72, 1254–1261. [Google Scholar] [CrossRef]
- Costa, E.M.; Spritzer, P.M.; Hohl, A.; Bachega, T.A. Effects of endocrine disruptors in the development of the female reproductive tract. Arq. Bras. Endocrinol. Metabol. 2014, 58, 153–161. [Google Scholar] [CrossRef]
- Adlercreutz, H.; Mazur, W. Phyto-oestrogens and Western diseases. Ann. Med. 1997, 29, 95–120. [Google Scholar] [CrossRef]
- Desmawati, D.; Sulastri, D. Phytoestrogens and Their Health Effect. Open Access Maced. J. Med. Sci. 2019, 7, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.M.; Powell, H.A.; Rajic, L.; Korach, K.S. The Role of Dietary Phytoestrogens and the Nuclear Receptor PPARγ in Adipogenesis: An In Vitro Study. Environ. Health Perspect. 2019, 127, 37007, Erratum in Environ. Health Perspect. 2019, 127, 109002. [Google Scholar] [CrossRef] [PubMed]
- Adlercreutz, H. Phytoestrogens: Epidemiology and a possible role in cancer protection. Environ. Health Perspect. 1995, 103 (Suppl. S7), 103–112. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, D.; Silva, I.d.S.; Higgins, C.; Sevak, L.; Kassam-Khamis, T.; Mangtani, P.; Adlercreutz, H.; McMichael, A. A semiquantitative food frequency questionnaire is a valid indicator of the usual intake of phytoestrogens by south Asian women in the UK relative to multiple 24-h dietary recalls and multiple plasma samples. J. Nutr. 2005, 135, 116–123. [Google Scholar] [CrossRef]
- Canivenc-Lavier, M.C.; Bennetau-Pelissero, C. Phytoestrogens and Health Effects. Nutrients 2023, 15, 317. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef]
- Liu, T.; Li, N.; Yan, Y.; Xiong, K.; Liu, Y.; Xia, Q.; Zhang, H.; Liu, Z. Recent advances in the anti-aging effects of phytoestrogens on collagen, water content, and oxidative stress. Phytother. Res. 2020, 34, 435–447. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Pivotal role of boron supplementation on bone health: A narrative review. J. Trace Elem. Med. Biol. 2020, 62, 126577. [Google Scholar] [CrossRef]
- Knight, D.C.; Eden, J.A. A review of the clinical effects of phytoestrogens. Obstet. Gynecol. 1996, 87 Pt 2, 897–904. [Google Scholar]
- Agradi, E.; Vegeto, E.; Sozzi, A.; Fico, G.; Regondi, S.; Tomè, F. Traditional healthy Mediterranean diet: Estrogenic activity of plants used as food and flavoring agents. Phytother. Res. 2006, 20, 670–675. [Google Scholar] [CrossRef]
- Senizza, A.; Rocchetti, G.; Mosele, J.I.; Patrone, V.; Callegari, M.L.; Morelli, L.; Lucini, L. Lignans and Gut Microbiota: An Interplay Revealing Potential Health Implications. Molecules 2020, 25, 5709. [Google Scholar] [CrossRef] [PubMed]
- Kładna, A.; Berczyński, P.; Kruk, I.; Piechowska, T.; Aboul-Enein, H.Y. Studies on the antioxidant properties of some phytoestrogens. Luminescence 2016, 31, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Lephart, E.D. Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Res. Rev. 2016, 31, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.Y.; Kim, M.Y.; Cho, J.Y. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef] [PubMed]
- Divi, R.L.; Chang, H.C.; Doerge, D.R. Anti-thyroid isoflavones from soybean: Isolation, characterization, and mechanisms of action. Biochem. Pharmacol. 1997, 54, 1087–1096. [Google Scholar] [CrossRef]
- Doerge, D.R.; Sheehan, D.M. Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health Perspect. 2002, 110 (Suppl. S3), 349–353. [Google Scholar] [CrossRef]
- Gorzkiewicz, J.; Bartosz, G.; Sadowska-Bartosz, I. The Potential Effects of Phytoestrogens: The Role in Neuroprotection. Molecules 2021, 26, 2954. [Google Scholar] [CrossRef]
- Lephart, E.D. Phytoestrogens (Resveratrol and Equol) for Estrogen-Deficient Skin-Controversies/Misinformation versus Anti-Aging In Vitro and Clinical Evidence via Nutraceutical-Cosmetics. Int. J. Mol. Sci. 2021, 22, 11218. [Google Scholar] [CrossRef]
- Mulligan, A.A.; Welch, A.A.; McTaggart, A.A.; Bhaniani, A.; Bingham, S.A. Intakes and sources of soya foods and isoflavones in a UK population cohort study (EPIC-Norfolk). Eur. J. Clin. Nutr. 2007, 61, 248–254. [Google Scholar] [CrossRef]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef]
- Boker, L.K.; Van der Schouw, Y.T.; De Kleijn, M.J.; Jacques, P.F.; Grobbee, D.E.; Peeters, P.H. Intake of dietary phytoestrogens by Dutch women. J. Nutr. 2002, 132, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Knaze, V.; Luján-Barroso, L.; Kuhnle, G.G.; Mulligan, A.A.; Touillaud, M.; Slimani, N.; Romieu, I.; Powell, N.; Tumino, R.; et al. Dietary intakes and food sources of phytoestrogens in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort. Eur. J. Clin. Nutr. 2012, 66, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Perez, P.; Pulgar, R.; Olea-Serrano, F.; Villalobos, M.; Rivas, A.; Metzler, M.; Pedraza, V.; Olea, N. The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environ. Health Perspect. 1998, 106, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Espino-Rosales, D.; Lopez-Moro, A.; Heras-González, L.; Jimenez-Casquet, M.J.; Olea-Serrano, F.; Mariscal-Arcas, M. Estimation of the Quality of the Diet of Mexican University Students Using DQI-I. Healthcare 2023, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Tur, J.A.; Romaguera, D.; Pons, A. The Diet Quality Index-International (DQI-I): Is it a useful tool to evaluate the quality of the Mediterranean diet? Br. J. Nutr. 2005, 93, 369–376. [Google Scholar] [CrossRef]
- Liu, L.; Wang, P.P.; Roebothan, B.; Ryan, A.; Tucker, C.S.; Colbourne, J.; Baker, N.; Cotterchio, M.; Yi, Y.; Sun, G. Assessing the validity of a self-administered food-frequency questionnaire (FFQ) in the adult population of Newfoundland and Labrador, Canada. Nutr. J. 2013, 12, 49. [Google Scholar] [CrossRef]
- Bountziouka, V.; Panagiotakos, D.B. Statistical methods used for the evaluation of reliability and validity of nutrition assessment tools used in medical research. Curr. Pharm. Des. 2010, 16, 3770–3775. [Google Scholar] [CrossRef]
- Dubois, L.; Diasparra, M.; Bédard, B.; Colapinto, C.K.; Fontaine-Bisson, B.; Morisset, A.S.; Tremblay, R.E.; Fraser, W.D. Adequacy of nutritional intake from food and supplements in a cohort of pregnant women in Québec, Canada: The 3D Cohort Study (Design, Develop, Discover). Am. J. Clin. Nutr. 2017, 106, 541–548. [Google Scholar] [CrossRef]
- Marván, L.; Pérez, A.B. NutrirKcal VO (v.1.1). 2005. Available online: www.nutrikcal.com (accessed on 6 October 2019).
- Pillow, P.C.; Duphorne, C.M.; Chang, S.; Contois, J.H.; Strom, S.S.; Spitz, M.R.; Hursting, S.D. Development of a database for assessing dietary phytoestrogen intake. Nutr. Cancer 1999, 33, 3–19. [Google Scholar] [CrossRef]
- Soto, A.M.; Chung, K.L.; Sonnenschein, C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ. Health Perspect. 1994, 102, 380–383. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M.; et al. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. Oxid. Med. Cell. Longev. 2021, 2021, 6331630. [Google Scholar] [CrossRef]
- De Kleijn, M.J.; van der Schouw, Y.T.; Wilson, P.W.; Grobbee, D.E.; Jacques, P.F. Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in postmenopausal U.S. women: The Framingham study. J. Nutr. 2002, 132, 276–282. [Google Scholar] [CrossRef]
- Tang, S.; Du, Y.; Oh, C.; No, J. Effects of Soy Foods in Postmenopausal Women: A Focus on Osteosarcopenia and Obesity. J. Obes. Metab. Syndr. 2020, 29, 180–187. [Google Scholar] [CrossRef]
- Chakraborty, D.; Gupta, K.; Biswas, S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomed. Pharmacother. 2021, 133, 111039. [Google Scholar] [CrossRef]
- Rizzolo-Brime, L.; Caro-Garcia, E.M.; Alegre-Miranda, C.A.; Felez-Nobrega, M.; Zamora-Ros, R. Lignan exposure: A worldwide perspective. Eur. J. Nutr. 2022, 61, 1143–1165. [Google Scholar] [CrossRef]
- Surh, J.; Kim, M.J.; Koh, E.; Kim, Y.K.; Kwon, H. Estimated intakes of isoflavones and coumestrol in Korean population. Int. J. Food Sci. Nutr. 2006, 57, 325–344. [Google Scholar] [CrossRef]
- Xu, Y.; Le Sayec, M.; Roberts, C.; Hein, S.; Rodriguez-Mateos, A.; Gibson, R. Dietary Assessment Methods to Estimate (Poly)phenol Intake in Epidemiological Studies: A Systematic Review. Adv. Nutr. 2021, 12, 1781–1801. [Google Scholar] [CrossRef]
- Shirabe, R.; Saito, E.; Sawada, N.; Ishihara, J.; Takachi, R.; Abe, S.K.; Shimazu, T.; Yamaji, T.; Goto, A.; Iwasaki, M.; et al. Fermented and nonfermented soy foods and the risk of breast cancer in a Japanese population-based cohort study. Cancer Med. 2021, 10, 757–771. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, D.W.; Kim, K.; Choe, J.S.; Lee, H.J. Usual intake of dietary isoflavone and its major food sources in Koreans: Korea National Health and Nutrition Examination Survey 2016–2018 data. Nutr. Res. Pract. 2022, 16 (Suppl. S1), S134–S146. [Google Scholar] [CrossRef]
- Stricker, R.; Eberhart, R.; Chevailler, M.C.; Quinn, F.A.; Bischof, P.; Stricker, R. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin. Chem. Lab. Med. 2006, 44, 883–887. [Google Scholar] [CrossRef]
- Velentzis, L.S.; Woodside, J.V.; Cantwell, M.M.; Leathem, A.J.; Keshtgar, M.R. Do phytoestrogens reduce the risk of breast cancer and breast cancer recurrence? What clinicians need to know. Eur. J. Cancer 2008, 44, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Batool, M.; Ranjha, M.M.A.N.; Roobab, U.; Manzoor, M.F.; Farooq, U.; Nadeem, H.R.; Nadeem, M.; Kanwal, R.; AbdElgawad, H.; Al Jaouni, S.K.; et al. Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.). Plants 2022, 11, 1394. [Google Scholar] [CrossRef] [PubMed]
- Birsa, M.L.; Sarbu, L.G. Hydroxy Chalcones and Analogs with Chemopreventive Properties. Int. J. Mol. Sci. 2023, 24, 10667. [Google Scholar] [CrossRef] [PubMed]
- Sklenickova, O.; Flesar, J.; Kokoska, L.; Vlkova, E.; Halamova, K.; Malik, J. Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria. Molecules 2010, 15, 1270–1279. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Cocozza, E.; Cemali, Ö.; Bayazıt, A.D.; Nanì, M.F.; Cerqua, I.; Morgillo, F.; Saygılı, S.K.; Canani, R.B.; Amero, P.; et al. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front. Pharmacol. 2023, 14, 1130562. [Google Scholar] [CrossRef]
- Feng, Z.J.; Lai, W.F. Chemical and Biological Properties of Biochanin A and Its Pharmaceutical Applications. Pharmaceutics 2023, 15, 1105. [Google Scholar] [CrossRef]
- Hüser, S.; Guth, S.; Joost, H.G.; Soukup, S.T.; Köhrle, J.; Kreienbrock, L.; Diel, P.; Lachenmeier, D.W.; Eisenbrand, G.; Vollmer, G.; et al. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: A comprehensive safety evaluation. Arch. Toxicol. 2018, 92, 2703–2748. [Google Scholar] [CrossRef]
Age (Years) | Weight (kg) | Height (m) | BMI (kg/m2) | ||
---|---|---|---|---|---|
Mean | 21.34 | 63.85 | 1.61 | 24.70 | |
Median | 20.00 | 60.00 | 1.61 | 23.61 | |
SD | 3.57 | 15.67 | 0.07 | 5.53 | |
Minimum | 17.00 | 29.00 | 1.10 | 14.30 | |
Maximum | 47.00 | 131.00 | 1.86 | 56.20 | |
Percentile | 25 | 19.00 | 54.00 | 1.56 | 20.69 |
50 | 20.00 | 60.00 | 1.61 | 23.61 | |
75 | 22.00 | 72.00 | 1.65 | 27.73 |
Food (g day−1) | Mean | Median | SD | Maximum |
---|---|---|---|---|
Cereals (total) | 120.09 | 93.72 | 117.04 | 580.00 |
White bread | 20.31 | 12.60 | 37.43 | 270.00 |
Other bread | 23.34 | 12.60 | 35.56 | 270.00 |
Breakfast cereal | 9.24 | 5.88 | 15.17 | 126.00 |
Rice | 13.84 | 10.00 | 16.11 | 90.00 |
Flour Tortillas | 6.16 | 0.00 | 16.15 | 75.00 |
Potatoes | 15.97 | 5.60 | 27.39 | 175.00 |
Pasta | 26.92 | 14.70 | 35.63 | 175.00 |
Legumes (total) | 46.54 | 43.00 | 38.44 | 223.40 |
Lentils | 2.45 | 0.90 | 6.16 | 75.00 |
Chickpeas | 0.79 | 0.00 | 1.90 | 14.70 |
Pea | 1.89 | 0.00 | 5.50 | 50.00 |
Kidney beans | 2.92 | 0.00 | 10.86 | 70.00 |
Beans | 39.04 | 40.00 | 31.08 | 80.00 |
Fruit (total) | 241.76 | 164.38 | 271.92 | 1744.82 |
Apples | 45.40 | 22.26 | 74.46 | 477.00 |
Pears | 16.85 | 4.02 | 33.70 | 335.00 |
Oranges | 27.34 | 15.96 | 37.19 | 342.00 |
Bananas | 34.01 | 22.89 | 43.24 | 490.50 |
Tangerines | 13.98 | 5.12 | 19.74 | 64.00 |
Strawberries | 20.39 | 5.40 | 36.09 | 180.00 |
Grapes | 19.14 | 3.42 | 57.79 | 513.00 |
Peaches | 13.79 | 2.31 | 38.63 | 346.50 |
Melon | 20.38 | 4.32 | 34.88 | 144.00 |
Watermelon | 19.04 | 4.29 | 33.82 | 143.00 |
Mangoes | 23.44 | 9.92 | 32.25 | 124.00 |
Sweets (total) | 29.43 | 16.64 | 39.24 | 180.00 |
Jam | 2.65 | 0.90 | 5.60 | 30.00 |
Pastries/Pastry | 10.87 | 2.70 | 20.47 | 90.00 |
Sweet cookie | 7.29 | 4.83 | 7.86 | 23.00 |
Alcoholic Drinks (total) | 35.73 | 9.90 | 119.66 | 1009.80 |
Beer | 33.68 | 9.90 | 90.94 | 1485.00 |
Red wine | 1.31 | 0.00 | 6.22 | 80.00 |
White wine | 0.74 | 0.00 | 3.15 | 40.00 |
Natural juice | 72.60 | 19.20 | 145.55 | 1080.00 |
Vegetables (total) | 207.23 | 138.36 | 267.75 | 1037.22 |
Tomato | 8.73 | 3.61 | 12.55 | 77.40 |
Onion/garlic | 11.05 | 4.79 | 15.34 | 102.60 |
Green pepper | 1.27 | 0.00 | 3.95 | 40.00 |
Cabbage/Cabbage | 23.24 | 6.39 | 43.62 | 213.00 |
Cauliflower | 18.89 | 6.39 | 42.47 | 532.50 |
Lettuce | 11.41 | 7.56 | 15.17 | 90.00 |
Cucumber | 29.55 | 13.28 | 35.44 | 129.48 |
Pumpkin | 22.00 | 4.68 | 37.53 | 390.00 |
Carrot | 24.20 | 10.16 | 31.66 | 127.00 |
Mushroom | 3.22 | 0.00 | 14.63 | 202.50 |
Spinach | 4.98 | 0.00 | 14.49 | 225.00 |
Broccoli | 11.66 | 3.39 | 21.92 | 113.00 |
Brussels sprouts | 10.61 | 3.39 | 19.57 | 113.00 |
Nuts (total) | 7.63 | 2.84 | 14.03 | 94.50 |
Walnuts | 1.72 | 0.81 | 3.83 | 27.00 |
Peanuts | 6.57 | 2.03 | 18.14 | 303.75 |
Other (total) | 130.97 | 120.87 | 134.26 | 945.00 |
Pizza | 24.69 | 10.80 | 45.75 | 360.00 |
Burritos | 107.72 | 49.14 | 114.79 | 585.00 |
Mean | Median | SD | Minimum | Maximum | |
---|---|---|---|---|---|
ISOFLAVONES | |||||
Diadzein (μg day−1) | 126.65 | 10.55 | 340.14 | 0.00 | 3654.46 |
Genistein (μg day−1) | 106.93 | 109.71 | 83.45 | 1.34 | 289.67 |
Biochanin A (μg day−1) | 3.01 | 2.90 | 2.85 | 0.00 | 22.43 |
Formononetin (μg day−1) | 106.80 | 110.60 | 85.04 | 1.37 | 247.66 |
LIGNANS | |||||
Enterolactone (μg day−1) | 182.57 | 147.24 | 171.69 | 0.19 | 813.13 |
Eneterodiol (μg day−1) | 134.57 | 121.78 | 118.29 | 0.16 | 648.71 |
Eecoisolariciresinol (μg day−1) | 173.16 | 121.21 | 199.91 | 0.22 | 1389.96 |
Matairesinol (μg day−1) | 22.96 | 18.26 | 24.12 | 0.00 | 199.17 |
COUMESTANS | |||||
Coumestrol (μg day−1) | 0.29 | 0.08 | 0.77 | 0.00 | 8.30 |
Daidzein | r2 | Genistein | r2 | Secoisolariciresinol | r2 | Formononetin | r2 |
---|---|---|---|---|---|---|---|
Fruit | 0.271 | Legumes | 0.903 | Cereals | 0.719 | Other * | 0.327 |
Vegetables | 0.322 | Nuts | 0.990 | Fruit | 0.937 | Fruit | 0.415 |
Various | 0.330 | Fruit | 0.995 | Nuts | 0.967 | Cereals | 0.450 |
Legumes | 1.000 | Legumes | 1.000 | ||||
Matairesinol | r2 | Biochanin A | r2 | Enterolactone | r2 | Enterodiol | r2 |
Cereals | 0.892 | Legumes | 0.985 | Vegetables | 0.876 | Fruit | 0.675 |
Fruit | 0.929 | Nuts | 0.990 | Fruit | 0.990 | Vegetables | 0.949 |
Sweets | 0.945 | Natural juice | 0.994 | Other * | 0.986 | ||
Various | 0.956 |
(g day−1) | Daidzein (μg day−1) | Genistein (μg day−1) | Formononetin (μg day−1) | Biochanin A (μg day−1) | Matairesinol (μg day−1) | Seicoresinol (μg day−1) | Enterolactone (μg day−1) | Enterodiol (μg day−1) | Coumestrol (μg day−1) | |
---|---|---|---|---|---|---|---|---|---|---|
Cereals | ||||||||||
Mean | 120.09 | 2.51 | 126.07 | 127.08 | 0.08 | 19.08 | 138.11 | 7.82 | 11.48 | |
Median | 93.72 | 1.32 | 78.88 | 80.73 | 0.05 | 10.93 | 79.78 | 5.20 | 7.72 | |
SD | 117.04 | 3.62 | 203.48 | 208.33 | 0.13 | 26.35 | 181.88 | 11.85 | 17.81 | |
Maximum | 580.00 | 27.36 | 1685.81 | 1730.04 | 1.07 | 200.79 | 1362.32 | 107.08 | 161.71 | |
Legumes | ||||||||||
Mean | 46.54 | 235.88 | 97.75 | 107.63 | 5.37 | -- | 0.20 | 26.86 | 186.79 | 0.19 |
Median | 43.00 | 4.32 | 99.46 | 108.48 | 3.85 | -- | 0.06 | 0.00 | 168.08 | 0.05 |
SD | 38.44 | 1247.45 | 77.62 | 85.48 | 12.52 | -- | 0.71 | 221.87 | 194.59 | 0.69 |
Maximum | 223.40 | 16,743.65 | 225.16 | 350.46 | 239.18 | 0.01 | 8.50 | 4391.42 | 2818.73 | 8.27 |
Fruit | ||||||||||
Mean | 241.76 | 0.57 | 3.92 | 0.01 | -- | 2.22 | 55.54 | 63.23 | 67.42 | -- |
Median | 164.38 | 0.24 | 2.25 | 0.00 | -- | 0.55 | 22.27 | 37.23 | 36.23 | -- |
SD | 271.92 | 0.81 | 5.28 | 0.01 | -- | 5.10 | 111.41 | 93.12 | 97.44 | -- |
Maximum | 1744.82 | 4.24 | 62.20 | 0.05 | -- | 78.7 | 1632.29 | 843.68 | 682.94 | -- |
Vegetables | ||||||||||
Mean | 207.23 | 0.62 | 1.62 | -- | -- | 0.77 | 16.00 | 150.67 | 68.68 | -- |
Median | 138.36 | 0.41 | 0.72 | -- | -- | 0.35 | 9.32 | 92.01 | 42.56 | -- |
SD | 267.75 | 0.86 | 2.98 | -- | -- | 1.59 | 23.47 | 209.67 | 87.43 | -- |
Maximum | 1037.22 | 7.77 | 30.15 | -- | -- | 18.35 | 255.16 | 1985.53 | 712.73 | -- |
Sweets | ||||||||||
Mean | 29.43 | 0.08 | 0.02 | -- | -- | 1.09 | 2.82 | 0.94 | 0.94 | -- |
Median | 16.64 | 0.03 | 0.01 | -- | -- | 0.59 | 1.13 | 0.26 | 0.26 | -- |
SD | 39.24 | 0.14 | 0.07 | -- | -- | 1.44 | 4.75 | 2.80 | 2.80 | -- |
Maximum | 180.00 | 0.89 | 0.94 | -- | -- | 8.43 | 50.44 | 38.96 | 38.96 | -- |
Natural juice | ||||||||||
Mean | 72.60 | 0.22 | 0.05 | -- | -- | -- | 1.42 | 7.72 | 6.28 | -- |
Median | 19.20 | 0.05 | 0.01 | -- | -- | -- | 0.34 | 1.87 | 1.52 | -- |
SD | 145.53 | 0.47 | 0.11 | -- | -- | -- | 2.98 | 16.26 | 13.23 | -- |
Maximum | 1080 | 3.02 | 0.73 | -- | -- | -- | 19.32 | 105.24 | 85.62 | -- |
Alcoholic Beverages | ||||||||||
Mean | 35.73 | 0.03 | 0.07 | 0.16 | 0.06 | 0.22 | 2.84 | -- | -- | -- |
Median | 9.90 | 0.01 | 0.02 | 0.04 | 0.01 | 0.00 | 0.00 | -- | -- | -- |
SD | 119.66 | 0.08 | 0.21 | 0.47 | 0.16 | 1.79 | 23.31 | -- | -- | -- |
Maximum | 1009.80 | 0.96 | 2.70 | 5.98 | 2.04 | 35.33 | 461.22 | -- | -- | -- |
Nuts | ||||||||||
Mean | 7.63 | 1.09 | 7.87 | 0.33 | 0.33 | 0.11 | 14.36 | 3.44 | -- | -- |
Median | 2.84 | 0.34 | 2.43 | 0.10 | 0.10 | 0.04 | 4.66 | 1.06 | -- | -- |
SD | 14.03 | 2.92 | 21.74 | 0.91 | 0.91 | 0.32 | 37.24 | 9.51 | -- | -- |
Maximum | 94.50 | 48.87 | 364.51 | 15.19 | 15.19 | 3.32 | 613.41 | 159.47 | -- | -- |
Other * | ||||||||||
Mean | 130.97 | 142.05 | 0.12 | 0.06 | -- | 0.68 | 5.01 | 2.87 | 9.86 | -- |
Median | 120.87 | 117.14 | 0.05 | 0.05 | -- | 0.26 | 4.02 | 1.83 | 7.62 | -- |
SD | 134.26 | 194.32 | 0.34 | 0.08 | -- | 2.12 | 6.66 | 5.60 | 12.93 | -- |
Maximum | 945.00 | 1056.62 | 6.26 | 0.43 | -- | 38.8 | 37.88 | 93.86 | 76.29 | -- |
Product | Concentration of Maximum Proliferative Effect | Proliferative Effect | PPR (%) | EPR (%) |
---|---|---|---|---|
Positive control E2 (1 × 10−10 M) | 1 × 10−10 M | 6.61 ± 0.30 | 100.00 | 100.00 |
Negative control (Culture medium) | --- | 1.00 ± 0.14 | --- | --- |
Daidzein | 1 × 10−5 M | 6.24 * ± 0.02 | 0.001 | 94.40 |
Genistein | 1 × 10−5 M | 6.37 ± 0.12 | 0.001 | 96.36 |
Biochanin A | 1 × 10−5 M | 7.11 ± 1.32 | 0.001 | 107.56 |
Formononetin | 1 × 10−5 M | 6.53 ± 1.25 | 0.001 | 98.78 |
Coumestrol | 1 × 10−5 M | 3.09 * ± 0.18 | 0.001 | 46.74 |
Enterolactone | 1 × 10−5 M | 1.16 ± 0.05 | 0.001 | 17.54 |
Matairesinol | 1 × 10−5 M | 1.59 * ± 0.14 | 0.001 | 24.05 |
Enterodiol | 1 × 10−5 M | 1.62 ± 0.04 | 0.001 | 24.50 |
Mean | Median | SD | Minimum | Maximum | |
---|---|---|---|---|---|
ISOFLAVONES | |||||
Diadzein (μg day−1) | 126.65 | 10.55 | 340.14 | 0.00 | 3654.46 |
* Eq. E2 (pmol day−1) | 4.98 | 0.41 | 13.87 | --- | 14.37 |
Genistein (μg day−1) | 106.93 | 109.71 | 83.45 | 1.34 | 289.67 |
Eq. E2 (pmol day−1) | 3.85 | 4.06 | 3.08 | 0.50 | 10.12 |
Biochanin A (μg day−1) | 3.01 | 2.90 | 2.85 | 0.00 | 22.43 |
Eq. E2 (pmol day−1) | 0.11 | 0.10 | 0.80 | ---- | 0.77 |
Formononetin (μg day−1) | 106.80 | 110.60 | 85.04 | 1.37 | 247.66 |
Eq. E2 (pmol day−1) | 3.97 | 4.11 | 3.16 | 0.05 | 9.21 |
LIGNANS | |||||
Enterolactone (μg day−1) | 182.57 | 147.24 | 171.69 | 0.19 | 813.13 |
Eq. E2 (pmol day−1) | 6.12 | 4.94 | 5.95 | 0.006 | 21.25 |
Eneterodiol (μg day−1) | 134.57 | 121.78 | 118.29 | 0.16 | 648.71 |
Eq. E2 (pmol day−1) | 4.45 | 4.03 | 3.91 | 0.005 | 21.45 |
Secoisolariciresinol (μg day−1) | 173.16 | 121.21 | 199.91 | 0.22 | 1389.96 |
Eq. E2 (pmol day−1) | 4.18 | 3.34 | 5.52 | 0.006 | 38.36 |
Matairesinol(μg day−1) | 22.96 | 18.26 | 24.12 | 0.00 | 199.17 |
Eq. E2 (pmol day−1) | 0.64 | 0.51 | 0.67 | --- | 5.56 |
COUMESTANS | |||||
Coumestrol (μg day−1) | 0.29 | 0.08 | 0.77 | 0.00 | 8.30 |
Eq. E2 (pmol day−1) | 0.001 | 0.003 | 0.03 | --- | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espino-Rosales, D.; Heras-Gonzalez, L.; Jimenez-Casquet, M.J.; Olea, N.; Olea-Serrano, F.; Mariscal-Arcas, M. Intake of Phytoestrogens and Estrogenic Effect of the Diet of Female University Students in Mexico. Appl. Sci. 2025, 15, 1092. https://doi.org/10.3390/app15031092
Espino-Rosales D, Heras-Gonzalez L, Jimenez-Casquet MJ, Olea N, Olea-Serrano F, Mariscal-Arcas M. Intake of Phytoestrogens and Estrogenic Effect of the Diet of Female University Students in Mexico. Applied Sciences. 2025; 15(3):1092. https://doi.org/10.3390/app15031092
Chicago/Turabian StyleEspino-Rosales, Diana, Leticia Heras-Gonzalez, Maria J. Jimenez-Casquet, Nicolás Olea, Fátima Olea-Serrano, and Miguel Mariscal-Arcas. 2025. "Intake of Phytoestrogens and Estrogenic Effect of the Diet of Female University Students in Mexico" Applied Sciences 15, no. 3: 1092. https://doi.org/10.3390/app15031092
APA StyleEspino-Rosales, D., Heras-Gonzalez, L., Jimenez-Casquet, M. J., Olea, N., Olea-Serrano, F., & Mariscal-Arcas, M. (2025). Intake of Phytoestrogens and Estrogenic Effect of the Diet of Female University Students in Mexico. Applied Sciences, 15(3), 1092. https://doi.org/10.3390/app15031092