Rearward Seating Orientation Decreases Trust and Increases Motion Sickness in Autonomous Vehicles
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Dependent Variables
2.3. Control Variables
2.4. Sample
2.5. Apparatus
2.6. Transparency Displays
2.7. NDRT
2.8. Procedure
3. Results
3.1. Motion Sickness
3.2. Trust
3.3. Driving Involvement, Hedonic Motivation, and Perceived Usefulness
3.4. Gaze Behavior
3.5. Behavioral Intention
3.6. Indirect Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATI | Affinity for Technology Interaction scale |
| AV | Autonomous Vehicle |
| FMS | Fast Motion Sickness Scale |
| HMI | Human–Machine Interface |
| iHMI | Internal Human–Machine Interface |
| MSSQ | Motion Sickness Susceptibility Questionnaire |
| NDRT | Non-Driving Related Task |
Appendix A
| Subsample 1: Perception Transparency On | ||
|---|---|---|
| Seating Orientation | Intention Transparency | Perception Transparency |
| Forward-Facing | Camera Feed | Bounding Boxes |
| Forward-Facing | Camera Feed + Arrows | Bounding Boxes |
| Rearward-Facing | Camera Feed | Bounding Boxes |
| Rearward-Facing | Camera Feed + Arrows | Bounding Boxes |
| Forward-Facing | No Image | No Bounding Boxes |
| Rearward-Facing | No Image | No Bounding Boxes |
| Subsample 2: Perception Transparency Off | ||
| Forward-Facing | Camera Feed | No Bounding Boxes |
| Forward-Facing | Camera Feed + Arrows | No Bounding Boxes |
| Rearward-Facing | Camera Feed | No Bounding Boxes |
| Rearward-Facing | Camera Feed + Arrows | No Bounding Boxes |
| Forward-Facing | No Image | No Bounding Boxes |
| Rearward-Facing | No Image | No Bounding Boxes |
References
- Jorlöv, S.; Bohman, K.; Larsson, A. Seating Positions and Activities in Highly Automated Cars—A Qualitative Study of Future Automated Driving Scenarios. In Proceedings of the IRCOBI Conference Proceedings, Antwerp, Belgium, 13–15 September 2017; pp. 13–22. [Google Scholar]
- Östling, M.; Larsson, A. Occupant Activities and Sitting Positions in Automated Vehicles in China and Sweden. In Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV): Technology: Enabling a Safer Tomorrow National Highway Traffic Safety Administration, Eindhoven, The Netherlands, 10–13 June 2019; number 19-0083. pp. 1–9. [Google Scholar]
- Pettersson, I.; Karlsson, I.M. Setting the Stage for Autonomous Cars: A Pilot Study of Future Autonomous Driving Experiences. IET Intell. Transp. Syst. 2015, 9, 694–701. [Google Scholar] [CrossRef]
- Han, S.; Jung, E.; Jung, M.; Kwahk, J.; Park, S. Psychophysical Methods and Passenger Preferences of Interior Designs. Appl. Ergon. 1998, 29, 499–506. [Google Scholar] [CrossRef] [PubMed]
- De Winkel, K.N.; Pretto, P.; Nooij, S.A.; Cohen, I.; Bülthoff, H.H. Efficacy of Augmented Visual Environments for Reducing Sickness in Autonomous Vehicles. Appl. Ergon. 2021, 90, 103282. [Google Scholar] [CrossRef]
- Diels, C. Will Autonomous Vehicles Make Us Sick? In Contemporary Ergonomics and Human Factors 2014; Sharples, S., Shorrock, S., Eds.; Taylor & Francis: Abingdon, UK, 2014; pp. 301–307. [Google Scholar] [CrossRef]
- Diels, C.; Bos, J.E.; Hottelart, K.; Reilhac, P. Motion Sickness in Automated Vehicles: The Elephant in the Room. In Road Vehicle Automation 3; Meyer, G., Beiker, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 121–129. [Google Scholar] [CrossRef]
- Diels, C.; Bos, J.E. Self-Driving Carsickness. Appl. Ergon. 2016, 53, 374–382. [Google Scholar] [CrossRef]
- Heiß, M.A.B.F.E. Fragebogenbasierte Studie Zu Kinetose (Bewegungskrankheit) Während Des Autofahrens. Ph.D. Thesis, Charité—Universitätsmedizin Berlin, Berlin, Germary, 2021. [Google Scholar] [CrossRef]
- Turner, M. Motion Sickness in Public Road Transport: Passenger Behaviour and Susceptibility. Ergonomics 1999, 42, 444–461. [Google Scholar] [CrossRef]
- Salter, S.; Diels, C.; Herriotts, P.; Kanarachos, S.; Thake, D. Motion Sickness in Automated Vehicles with Forward and Rearward Facing Seating Orientations. Appl. Ergon. 2019, 78, 54–61. [Google Scholar] [CrossRef]
- Paddeu, D.; Parkhurst, G.; Shergold, I. Passenger Comfort and Trust on First-Time Use of a Shared Autonomous Shuttle Vehicle. Transp. Res. Part C Emerg. Technol. 2020, 115, 102604. [Google Scholar] [CrossRef]
- Hewitt, C.; Politis, I.; Amanatidis, T.; Sarkar, A. Assessing Public Perception of Self-Driving Cars: The Autonomous Vehicle Acceptance Model. In Proceedings of the 24th International Conference on Intelligent User Interfaces, Marina del Ray, CA, USA, 17–20 March 2019; pp. 518–527. [Google Scholar] [CrossRef]
- Nordhoff, S.; Madigan, R.; Van Arem, B.; Merat, N.; Happee, R. Interrelationships among Predictors of Automated Vehicle Acceptance: A Structural Equation Modelling Approach. Theor. Issues Ergon. Sci. 2021, 22, 383–408. [Google Scholar] [CrossRef]
- Nordhoff, S.; Malmsten, V.; Van Arem, B.; Liu, P.; Happee, R. A Structural Equation Modeling Approach for the Acceptance of Driverless Automated Shuttles Based on Constructs from the Unified Theory of Acceptance and Use of Technology and the Diffusion of Innovation Theory. Transp. Res. Part F Traffic Psychol. Behav. 2021, 78, 58–73. [Google Scholar] [CrossRef]
- Osswald, S.; Wurhofer, D.; Trösterer, S.; Beck, E.; Tscheligi, M. Predicting Information Technology Usage in the Car: Towards a Car Technology Acceptance Model. In Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Portsmouth, NH, USA, 17–19 October 2012; pp. 51–58. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Lin, R.; Zhang, W. The Roles of Initial Trust and Perceived Risk in Public’s Acceptance of Automated Vehicles. Transp. Res. Part C Emerg. Technol. 2019, 98, 207–220. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Zeng, J.; Zhu, H.; Zhu, H. Automated Vehicle Acceptance in China: Social Influence and Initial Trust Are Key Determinants. Transp. Res. Part C Emerg. Technol. 2020, 112, 220–233. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, W.; Zhang, Y.; Tao, D.; Li, G.; Qu, X. What Drives People to Use Automated Vehicles? A Meta-Analytic Review. Accid. Anal. Prev. 2021, 159, 106270. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the Importance of Trust on Adopting an Autonomous Vehicle. Int. J.-Hum.-Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Ghazizadeh, M.; Lee, J.D.; Boyle, L.N. Extending the Technology Acceptance Model to Assess Automation. Cogn. Technol. Work. 2012, 14, 39–49. [Google Scholar] [CrossRef]
- Benleulmi, A.Z.; Blecker, T. Investigating the Factors Influencing the Acceptance of Fully Autonomous Cars. In Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg, Germany, 11–12 October 2017; Volume 23, pp. 99–115. [Google Scholar] [CrossRef]
- Buckley, L.; Kaye, S.A.; Pradhan, A.K. Psychosocial Factors Associated with Intended Use of Automated Vehicles: A Simulated Driving Study. Accid. Anal. Prev. 2018, 115, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Herrenkind, B.; Brendel, A.B.; Nastjuk, I.; Greve, M.; Kolbe, L.M. Investigating End-User Acceptance of Autonomous Electric Buses to Accelerate Diffusion. Transp. Res. Part D Transp. Environ. 2019, 74, 255–276. [Google Scholar] [CrossRef]
- Jing, P.; Xu, G.; Chen, Y.; Shi, Y.; Zhan, F. The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review. Sustainability 2020, 12, 1719. [Google Scholar] [CrossRef]
- Nordhoff, S.; Kyriakidis, M.; Van Arem, B.; Happee, R. A Multi-Level Model on Automated Vehicle Acceptance (MAVA): A Review-Based Study. Theor. Issues Ergon. Sci. 2019, 20, 682–710. [Google Scholar] [CrossRef]
- Panagiotopoulos, I.; Dimitrakopoulos, G. An Empirical Investigation on Consumers’ Intentions towards Autonomous Driving. Transp. Res. Part C Emerg. Technol. 2018, 95, 773–784. [Google Scholar] [CrossRef]
- Rahman, M.M.; Deb, S.; Strawderman, L.; Burch, R.; Smith, B. How the Older Population Perceives Self-Driving Vehicles. Transp. Res. Part Traffic Psychol. Behav. 2019, 65, 242–257. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, K.; Min, H.; Wang, Z.; Zhao, X.; Liu, P. What Drives People to Accept Automated Vehicles? Findings from a Field Experiment. Transp. Res. Part C Emerg. Technol. 2018, 95, 320–334. [Google Scholar] [CrossRef]
- Lee, J.D.; See, K.A. Trust in Automation: Designing for Appropriate Reliance. Hum. Factors 2004, 46, 50–80. [Google Scholar] [CrossRef]
- Beggiato, M.; Hartwich, F.; Schleinitz, K.; Krems, J.; Othersen, I.; Petermann-Stock, I. What Would Drivers like to Know during Automated Driving? Information Needs at Different Levels of Automation. In Proceedings of the 7th Conference on Driver Assistance, Munich, Germany, 25–26 November 2015. [Google Scholar] [CrossRef]
- Detjen, H.; Salini, M.; Kronenberger, J.; Geisler, S.; Schneegass, S. Towards Transparent Behavior of Automated Vehicles: Design and Evaluation of HUD Concepts to Support System Predictability Through Motion Intent Communication. In Proceedings of the 23rd International Conference on Mobile Human-Computer Interaction, Toulouse & Virtual, France, 27 September–1 October 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Häuslschmid, R.; Von Bülow, M.; Pfleging, B.; Butz, A. SupportingTrust in Autonomous Driving. In Proceedings of the 22nd International Conference on Intelligent User Interfaces, Limassol, Cyprus, 13–16 March 2017; pp. 319–329. [Google Scholar] [CrossRef]
- Walker, F.; Forster, Y.; Hergeth, S.; Kraus, J.; Payre, W.; Wintersberger, P.; Martens, M. Trust in Automated Vehicles: Constructs, Psychological Processes, and Assessment. Front. Psychol. 2023, 14, 1279271. [Google Scholar] [CrossRef]
- Cho, Y.; Park, J.; Park, S.; Jung, E.S. Technology Acceptance Modeling Based on User Experience for Autonomous Vehicles. J. Ergon. Soc. Korea 2017, 36, 87–108. [Google Scholar]
- Madigan, R.; Louw, T.; Wilbrink, M.; Schieben, A.; Merat, N. What Influences the Decision to Use Automated Public Transport? Using UTAUT to Understand Public Acceptance of Automated Road Transport Systems. Transp. Res. Part F Traffic Psychol. Behav. 2017, 50, 55–64. [Google Scholar] [CrossRef]
- Reason, J.T. Motion Sickness Adaptation: A Neural Mismatch Model. J. R. Soc. Med. 1978, 71, 819–829. [Google Scholar] [CrossRef]
- Zou, X.; Logan, D.B.; Vu, H.L. Modeling Public Acceptance of Private Autonomous Vehicles: Value of Time and Motion Sickness Viewpoints. Transp. Res. Part C Emerg. Technol. 2022, 137, 103548. [Google Scholar] [CrossRef]
- Metzulat, M.; Metz, B.; Landau, A.; Neukum, A.; Kunde, W. Does the Visual Input Matter? Influence of Non-Driving Related Tasks on Car Sickness in an Open Road Setting. Transp. Res. Part F Traffic Psychol. Behav. 2024, 104, 234–248. [Google Scholar] [CrossRef]
- Brietzke, A.; Pham Xuan, R.; Dettmann, A.; Bullinger-Hoffmann, A. Head Motion as Indicator for Visual Anticipation in the Context of Car Sickness. IEEE Trans. Intell. Transp. Syst. 2020. Available online: https://www.researchgate.net/publication/345763082_Head_motion_as_indicator_for_visual_anticipation_in_the_context_of_car_sickness (accessed on 8 November 2025).
- Brietzke, A.; Pham Xuan, R.; Dettmann, A.; Bullinger, A.C. Influence of Dynamic Stimulation, Visual Perception and Individual Susceptibility to Car Sickness during Controlled Stop-and-Go Driving. Forsch. Ingenieurwesen 2021, 85, 517–526. [Google Scholar] [CrossRef]
- Jones, M.L.H.; Le, V.C.; Ebert, S.M.; Sienko, K.H.; Matthew, P.R.; Sayer, J.R. Motion Sickness in Passenger Vehicles during Test Track Operations. Ergonomics 2019, 62, 1357–1371. [Google Scholar] [CrossRef]
- Matsangas, P.; McCauley, M.E.; Becker, W. The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance. Hum. Factors J. Hum. Factors Ergon. Soc. 2014, 56, 1124–1135. [Google Scholar] [CrossRef]
- Smyth, J.; Birrell, S.; Mouzakitis, A.; Jennings, P. Motion Sickness and Human Performance—Exploring the Impact of Driving Simulator User Trials. In Advances in Human Aspects of Transportation; Stanton, N., Ed.; Springer International Publishing: Cham, Switzerland, 2019; Volume 786, pp. 445–457. [Google Scholar] [CrossRef]
- Diels, C.; Thompson, S. Information Expectations in Highly and Fully Automated Vehicles. In Advances in Human Aspects of Transportation; Stanton, N.A., Ed.; Springer: Cham, Switzerland, 2018; pp. 742–748. [Google Scholar] [CrossRef]
- Hoff, K.A.; Bashir, M. Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust. Hum. Factors 2015, 57, 407–434. [Google Scholar] [CrossRef]
- Oliveira, L.; Burns, C.; Luton, J.; Iyer, S.; Birrell, S. The Influence of System Transparency on Trust: Evaluating Interfaces in a Highly Automated Vehicle. Transp. Res. Part F Traffic Psychol. Behav. 2020, 72, 280–296. [Google Scholar] [CrossRef]
- Wintersberger, P.; Frison, A.K.; Riener, A.; Sawitzky, T.V. Fostering User Acceptance and Trust in Fully Automated Vehicles: Evaluating the Potential of Augmented Reality. Presence Teleoperators Virtual Environ. 2018, 27, 46–62. [Google Scholar] [CrossRef]
- Flohr, L.A.; Valiyaveettil, J.S.; Krüger, A.; Wallach, D.P. Prototyping Autonomous Vehicle Windshields with AR and Real-Time Object Detection Visualization: An On-Road Wizard-of-Oz Study. In Proceedings of the 2023 ACM Designing Interactive Systems Conference, Pittsburgh, PA, USA, 10–14 July 2023; pp. 2123–2137. [Google Scholar] [CrossRef]
- Fröhlich, P.; Schatz, R.; Buchta, M.; Schrammel, J.; Suette, S.; Tscheligi, M. “What’s the Robo-Driver up to?” Requirements for Screen-based Awareness and Intent Communication in Autonomous Buses. i-com 2019, 18, 151–165. [Google Scholar] [CrossRef]
- Wilbrink, M.; Schieben, A.; Oehl, M. Reflecting the Automated Vehicle’s Perception and Intention: Light-based Interaction Approaches for on-Board HMI in Highly Automated Vehicles. In Proceedings of the Companion Proceedings of the 25th International Conference on Intelligent User Interfaces, Cagliari, Italy, 17–20 March 2020; pp. 105–107. [Google Scholar] [CrossRef]
- Mühlbacher, D.; Tomzig, M.; Reinmüller, K.; Rittger, L. Methodological Considerations Concerning Motion Sickness Investigations during Automated Driving. Information 2020, 11, 265. [Google Scholar] [CrossRef]
- Keshavarz, B.; Hecht, H. Validating an Efficient Method to Quantify Motion Sickness. Hum. Factors J. Hum. Factors Ergon. Soc. 2011, 53, 415–426. [Google Scholar] [CrossRef]
- Holthausen, B.E.; Wintersberger, P.; Walker, B.N.; Riener, A. Situational Trust Scale for Automated Driving (STS-AD): Development and Initial Validation. In Proceedings of the 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Virtual Event, DC, USA, 21–22 September 2020; pp. 40–47. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef]
- Golding, J.F. Predicting Individual Differences in Motion Sickness Susceptibility by Questionnaire. Personal. Individ. Differ. 2006, 41, 237–248. [Google Scholar] [CrossRef]
- Franke, T.; Attig, C.; Wessel, D. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. Int. J. Hum.-Comput. Interact. 2019, 35, 456–467. [Google Scholar] [CrossRef]
- Sinha, R.; Curran, P.G.; Merritt, S.M.; Ilgen, D.R. Role of Trust in Decision Making: Trusting Humans versus Trusting Machines. In Proceedings of the Paper Session at the Academy of Management Annual Meeting, Anaheim, CA, USA, 8 August 2022. [Google Scholar]
- Scholz, D.D.; Kraus, J.; Miller, L. Measuring the Propensity to Trust in Automated Technology: Examining Similarities to Dispositional Trust in Other Humans and Validation of the PTT-A Scale. Int. J. Hum.-Comput. Interact. 2025, 41, 970–993. [Google Scholar] [CrossRef]
- Bolton, A.; Burnett, G.; Large, D.R. An Investigation of Augmented Reality Presentations of Landmark-Based Navigation Using a Head-up Display. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Nottingham, UK, 1–3 September 2015; pp. 56–63. [Google Scholar] [CrossRef]
- Debernard, S.; Chauvin, C.; Pokam, R.; Langlois, S. Designing Human-Machine Interface for Autonomous Vehicles. IFAC-PapersOnLine 2016, 49, 609–614. [Google Scholar] [CrossRef]
- Detjen, H.; Faltaous, S.; Pfleging, B.; Geisler, S.; Schneegass, S. How to Increase Automated Vehicles’ Acceptance through In-Vehicle Interaction Design: A Review. Int. J. Hum.-Comput. Interact. 2021, 37, 308–330. [Google Scholar] [CrossRef]
- Künzer, L. „Alarmstufe Rot!” oder „Alles im grünen Bereich!” Farben im Kontext von Gefahr und Sicherheit. Ph.D. Thesis, Universität Regensburg, Regensburg, Germany, 2016. [Google Scholar]
- Carmona, J.; Guindel, C.; Garcia, F.; De La Escalera, A. eHMI: Review and Guidelines for Deployment on Autonomous Vehicles. Sensors 2021, 21, 2912. [Google Scholar] [CrossRef]
- Dey, D.; Habibovic, A.; Pfleging, B.; Martens, M.; Terken, J. Color and Animation Preferences for a Light Band eHMI in Interactions Between Automated Vehicles and Pedestrians. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Metzulat, M.; Metz, B.; Edelmann, A.; Neukum, A.; Kunde, W. Sick of Being Driven?—Prevalence and Modulating Factors of Carsickness in the European Population in Context of Automated Driving. arXiv 2025. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Murrar, S.; Brauer, M. Mixed Model Analysis of Variance. In The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2018; pp. 1075–1078. [Google Scholar] [CrossRef]
- Depaoli, S.; Clifton, J.P. A Bayesian Approach to Multilevel Structural Equation Modeling with Continuous and Dichotomous Outcomes. Struct. Equ. Model. 2015, 22, 327–351. [Google Scholar] [CrossRef]
- Kim, S.Y.; Huh, D.; Zhou, Z.; Mun, E.Y. A Comparison of Bayesian to Maximum Likelihood Estimation for Latent Growth Models in the Presence of a Binary Outcome. Int. J. Behav. Dev. 2020, 44, 447–457. [Google Scholar] [CrossRef]
- Ju, K.; Lin, L.; Chu, H.; Cheng, L.L.; Xu, C. Laplace Approximation, Penalized Quasi-Likelihood, and Adaptive Gauss–Hermite Quadrature for Generalized Linear Mixed Models: Towards Meta-Analysis of Binary Outcome with Sparse Data. BMC Med. Res. Methodol. 2020, 20, 152. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 5th ed.; Methodology in the Social Sciences; The Guilford Press: New York, NY, USA, 2023. [Google Scholar]
- Zhang, Q.; Yang, X.J.; Robert, L.P., Jr. Understanding Explanation Content for Cognitive and Affective Trust in Automated Vehicles. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; Sage: Los Angeles, CA, USA, 2025. [Google Scholar]
- Palatinus, Z.; Lukovics, M.; Volosin, M.; Dudás, Z.; Prónay, S.; Majó-Petri, Z.; Lengyel, H.; Szalay, Z. Passenger Physiology in Self-Driving Vehicles during Unexpected Events. Sci. Rep. 2025, 15, 7899. [Google Scholar] [CrossRef]
- Ekman, F.; Johansson, M.; Bligård, L.O.; Karlsson, M.; Strömberg, H. Exploring Automated Vehicle Driving Styles as a Source of Trust Information. Transp. Res. Part F Traffic Psychol. Behav. 2019, 65, 268–279. [Google Scholar] [CrossRef]
- Strauch, C.; Mühl, K.; Patro, K.; Grabmaier, C.; Reithinger, S.; Baumann, M.; Huckauf, A. Real Autonomous Driving from a Passenger’s Perspective: Two Experimental Investigations Using Gaze Behaviour and Trust Ratings in Field and Simulator. Transp. Res. Part F Traffic Psychol. Behav. 2019, 66, 15–28. [Google Scholar] [CrossRef]
- Avetisian, L.; Ayoub, J.; Zhou, F. Anticipated Emotions Associated with Trust in Autonomous Vehicles. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2022, 66, 199–203. [Google Scholar] [CrossRef]
- Gordillo Chávez, D.; Cloarec, J.; Meyer-Waarden, L. Opening the Moral Machine’s Cover: How Algorithmic Aversion Shapes Autonomous Vehicle Adoption. Transp. Res. Part A Policy Pract. 2024, 187, 104193. [Google Scholar] [CrossRef]
- Firth, D. Bias Reduction of Maximum Likelihood Estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Puhr, R.; Heinze, G.; Nold, M.; Lusa, L.; Geroldinger, A. Firth’s Logistic Regression with Rare Events: Accurate Effect Estimates and Predictions? Stat. Med. 2017, 36, 2302–2317. [Google Scholar] [CrossRef]
- Memon, M.A.; Ting, H.; Cheah, J.H.; Thurasamy, R.; Chuah, F.; Cham, T.H. Sample Size for Survey Research: Review and Recommendations. J. Appl. Struct. Equ. Model. 2020, 4, i–xx. [Google Scholar] [CrossRef]
- Wolf, E.J.; Harrington, K.M.; Clark, S.L.; Miller, M.W. Sample Size Requirements for Structural Equation Models: An Evaluation of Power, Bias, and Solution Propriety. Educ. Psychol. Meas. 2013, 76, 913–934. [Google Scholar] [CrossRef]
- Hecht, T.; Feldhütter, A.; Draeger, K.; Bengler, K. What Do You Do? An Analysis of Non-driving Related Activities During a 60 Minutes Conditionally Automated Highway Drive. In Human Interaction and Emerging Technologies; Ahram, T., Taiar, R., Colson, S., Choplin, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1018, pp. 28–34. [Google Scholar] [CrossRef]
- Hecht, T.; Darlagiannis, E.; Bengler, K. Non-Driving Related Activities in Automated Driving—An Online Survey Investigating User Needs. In Human Systems Engineering and Design II; Ahram, T., Karwowski, W., Pickl, S., Taiar, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1026, pp. 182–188. [Google Scholar] [CrossRef]
- Diels, C.; Bos, J. Great Expectations: On the Design of Predictive Motion Cues to Alleviate Carsickness. In HCI in Mobility, Transport, and Automotive Systems; Krömker, H., Ed.; Springer International Publishing: Cham, Switzerland, 2021; Volume 12791, pp. 240–251. [Google Scholar] [CrossRef]
- Graybiel, A. Susceptibility to Acute Motion Sickness in Blind Persons. Aerosp. Med. 1970, 41, 650–653. [Google Scholar]
- De Thierry De Faletans, C.; Watelain, E.; Duché, P. Motion Sickness and Visual Impairment. Brain Res. Bull. 2024, 217, 111063. [Google Scholar] [CrossRef] [PubMed]
- Hainich, R.; Drewitz, U.; Ihme, K.; Lauermann, J.; Niedling, M.; Oehl, M. Evaluation of a Human–Machine Interface for Motion Sickness Mitigation Utilizing Anticipatory Ambient Light Cues in a Realistic Automated Driving Setting. Information 2021, 12, 176. [Google Scholar] [CrossRef]
- Rottmann, L.; Johannsen, A.; Niedling, M.; Vollrath, M. Influence of Seating Orientation on Motion Sickness in Autonomous Vehicles. Appl. Ergon. 2026, 130, 104643. [Google Scholar] [CrossRef] [PubMed]







| Dependent Variable | Effect | F | dfeffect | dferror | p-Value | Partial |
|---|---|---|---|---|---|---|
| Intention Transparency | SeatingOrientation | 28.534 | 1 | 221.449 | <0.001 *** | 0.114 |
| IT | 0.456 | 2 | 234.877 | 0.634 | 0.004 | |
| PT | 0.005 | 1 | 251.253 | 0.942 | 0.000 | |
| SeatingOrientation:IT | 0.284 | 2 | 221.449 | 0.753 | 0.003 | |
| SeatingOrientation:PT | 0.012 | 1 | 221.449 | 0.914 | 0.000 | |
| IT:PT | 0.773 | 1 | 221.449 | 0.380 | 0.003 | |
| SeatingOrientation:IT:PT | 0.377 | 1 | 221.449 | 0.540 | 0.002 | |
| Perception Transparency | SeatingOrientation | 2.777 | 1 | 221.401 | 0.097 | 0.012 |
| IT | 0.635 | 2 | 232.370 | 0.531 | 0.005 | |
| PT | 0.437 | 1 | 263.859 | 0.509 | 0.002 | |
| SeatingOrientation:IT | 0.146 | 2 | 221.401 | 0.864 | 0.001 | |
| SeatingOrientation:PT | 2.088 | 1 | 221.401 | 0.150 | 0.009 | |
| IT:PT | 0.004 | 1 | 221.401 | 0.947 | 0.000 | |
| SeatingOrientation:IT:PT | 0.128 | 1 | 221.401 | 0.720 | 0.001 | |
| Motion Sickness | SeatingOrientation | 12.859 | 1 | 221.052 | <0.001 *** | 0.055 |
| IT | 0.935 | 2 | 224.687 | 0.394 | 0.008 | |
| PT | 0.017 | 1 | 245.661 | 0.896 | 0.000 | |
| SeatingOrientation:IT | 0.002 | 2 | 221.052 | 0.998 | 0.000 | |
| SeatingOrientation:PT | 2.586 | 1 | 221.052 | 0.109 | 0.012 | |
| IT:PT | 2.632 | 1 | 221.052 | 0.106 | 0.012 | |
| SeatingOrientation:IT:PT | 0.002 | 1 | 221.052 | 0.968 | 0.000 | |
| Trust | SeatingOrientation | 7.845 | 1 | 221.000 | 0.006 ** | 0.034 |
| IT | 0.431 | 2 | 236.300 | 0.650 | 0.004 | |
| PT | 1.220 | 1 | 265.992 | 0.270 | 0.005 | |
| SeatingOrientation:IT | 0.199 | 2 | 221.000 | 0.820 | 0.002 | |
| SeatingOrientation:PT | 2.350 | 1 | 221.000 | 0.127 | 0.011 | |
| IT:PT | 0.008 | 1 | 221.000 | 0.927 | 0.000 | |
| SeatingOrientation:IT:PT | 0.005 | 1 | 221.000 | 0.945 | 0.000 | |
| Driving Involvement | SeatingOrientation | 0.790 | 1 | 220.869 | 0.375 | 0.004 |
| IT | 0.803 | 2 | 0 | 1.000 | 1.000 | |
| PT | 0.102 | 1 | 0 | 1.000 | 1.000 | |
| SeatingOrientation:IT | 0.222 | 2 | 220.869 | 0.801 | 0.002 | |
| SeatingOrientation:PT | 2.663 | 1 | 220.869 | 0.104 | 0.012 | |
| IT:PT | 0.002 | 1 | 220.869 | 0.960 | 0.000 | |
| SeatingOrientation:IT:PT | 0.023 | 1 | 220.869 | 0.879 | 0.000 | |
| Hedonic Motivation | SeatingOrientation | 10.492 | 1 | 220.858 | 0.001 ** | 0.045 |
| IT | 0.874 | 2 | 0 | 1.000 | 1.000 | |
| PT | 0.008 | 1 | 0 | 1.000 | 0.996 | |
| SeatingOrientation:IT | 0.377 | 2 | 220.858 | 0.687 | 0.003 | |
| SeatingOrientation:PT | 3.067 | 1 | 220.858 | 0.081 | 0.014 | |
| IT:PT | 0.601 | 1 | 220.858 | 0.439 | 0.003 | |
| SeatingOrientation:IT:PT | 0.612 | 1 | 220.858 | 0.435 | 0.003 | |
| Perceived Usefulness | SeatingOrientation | 4.597 | 1 | 220.877 | 0.033 * | 0.020 |
| IT | 0.378 | 2 | 226.044 | 0.686 | 0.003 | |
| PT | 0.134 | 1 | 223.885 | 0.715 | 0.001 | |
| SeatingOrientation:IT | 0.591 | 2 | 220.877 | 0.554 | 0.005 | |
| SeatingOrientation:PT | 1.465 | 1 | 220.877 | 0.227 | 0.007 | |
| IT:PT | 0.882 | 1 | 220.877 | 0.349 | 0.004 | |
| SeatingOrientation:IT:PT | 0.496 | 1 | 220.877 | 0.482 | 0.002 | |
| Fixation Duration Display | SeatingOrientation | 3.393 | 1 | 217.137 | 0.067 | 0.015 |
| IT | 1.394 | 2 | 227.322 | 0.250 | 0.012 | |
| PT | 1.521 | 1 | 127.743 | 0.220 | 0.012 | |
| SeatingOrientation:IT | 2.789 | 2 | 217.230 | 0.064. | 0.025 | |
| SeatingOrientation:PT | 1.016 | 1 | 216.950 | 0.315 | 0.005 | |
| IT:PT | 0.016 | 1 | 216.950 | 0.900 | 0.000 | |
| SeatingOrientation:IT:PT | 0.906 | 1 | 216.950 | 0.342 | 0.004 |
| Outcome | Predictor | Coefficient | SE | z | p | 95% CI | Beta |
|---|---|---|---|---|---|---|---|
| Intention Transparency | Seating Orientation | −0.50 | 0.12 | −4.02 | <0.001 *** | [−0.74; −0.26] | −0.25 |
| Intention Transparency | Perception Transparency | 0.19 | 0.12 | 1.58 | 0.114 | [−0.05; 0.42] | 0.14 |
| Motion Sickness | Seating Orientation | 0.51 | 0.17 | 3.08 | 0.002 ** | [0.19; 0.84] | 0.10 |
| Trust | Intention Transparency | 0.15 | 0.08 | 1.76 | 0.079 | [−0.02; 0.31] | 0.16 |
| Trust | Perception Transparency | 0.35 | 0.11 | 3.19 | 0.001 ** | [0.14; 0.57] | 0.29 |
| Trust | Driving Involvement | −0.20 | 0.06 | −3.15 | 0.002 ** | [−0.33; −0.08] | −0.23 |
| Trust | Motion Sickness | −0.09 | 0.02 | −3.84 | <0.001 *** | [−0.14; −0.05] | −0.27 |
| Driving Involvement | Perception Transparency | −0.26 | 0.14 | −1.91 | 0.056 | [−0.53; 0.01] | −0.19 |
| Driving Involvement | Motion Sickness | 0.14 | 0.03 | 5.23 | <0.001 *** | [0.09; 0.20] | 0.36 |
| Driving Involvement | Intention Transparency | 0.28 | 0.06 | 4.63 | <0.001 *** | [0.16; 0.39] | 0.27 |
| Perceived Usefulness | Trust | 0.60 | 0.15 | 4.09 | <0.001 *** | [0.31; 0.88] | 0.42 |
| Perceived Usefulness | Motion Sickness | −0.07 | 0.07 | −1.06 | 0.289 | [−0.20; 0.06] | −0.14 |
| Perceived Usefulness | Driving Involvement | −0.04 | 0.08 | −0.43 | 0.665 | [−0.20; 0.13] | −0.03 |
| Hedonic Motivation | Motion Sickness | −0.14 | 0.06 | −2.20 | 0.028 * | [−0.26; −0.02] | −0.26 |
| Hedonic Motivation | Trust | 0.45 | 0.15 | 2.93 | 0.003 ** | [0.15; 0.75] | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rottmann, L.; Waldmann, A.; Johannsen, A.; Vollrath, M. Rearward Seating Orientation Decreases Trust and Increases Motion Sickness in Autonomous Vehicles. Appl. Sci. 2025, 15, 12027. https://doi.org/10.3390/app152212027
Rottmann L, Waldmann A, Johannsen A, Vollrath M. Rearward Seating Orientation Decreases Trust and Increases Motion Sickness in Autonomous Vehicles. Applied Sciences. 2025; 15(22):12027. https://doi.org/10.3390/app152212027
Chicago/Turabian StyleRottmann, Leonhard, Alina Waldmann, Aniella Johannsen, and Mark Vollrath. 2025. "Rearward Seating Orientation Decreases Trust and Increases Motion Sickness in Autonomous Vehicles" Applied Sciences 15, no. 22: 12027. https://doi.org/10.3390/app152212027
APA StyleRottmann, L., Waldmann, A., Johannsen, A., & Vollrath, M. (2025). Rearward Seating Orientation Decreases Trust and Increases Motion Sickness in Autonomous Vehicles. Applied Sciences, 15(22), 12027. https://doi.org/10.3390/app152212027

