Design of a Snake-like Robot for Rapid Injury Detection in Patients with Hemorrhagic Shock
Abstract
1. Introduction
2. Design of Snake-like Robot System
2.1. Structural Design of Snake-like Robot
2.2. Analysis of Motion Control of Snake-like Robot
2.3. Design of the Electrical System Structure of the Snake-like Robot
3. Experiments and Analysis
3.1. Experiment on Motion Performance of Snake-like Robot
3.1.1. Simulation and Analysis of Snake-like Robot
3.1.2. Outdoor Grassland Experiments and Analysis
3.1.3. Outdoor Experiment and Analysis on Gravel Ground
3.1.4. Experiment and Analysis on Surmounting Step-Type Obstacles
3.1.5. Experiment and Analysis on Gap Crossing
3.2. Non-Contact Sensing Information Acquisition Experiment
3.2.1. Voice Information Acquisition and Analysis
3.2.2. Camera and Infrared Vision Acquisition and Analysis
3.2.3. Ethical and Risk Considerations of the Snake-like Robot
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, J.S.; Satahoo, S.S.; Butler, F.K.; Dermer, H.; Naranjo, D.; Julien, K.; Van Haren, R.M.; Namias, N.; Blackbourne, L.H.; Schulman, C.I. An analysis of prehospital deaths: Who can we save? J. Trauma Acute Care Surg. 2014, 77, 213–218. [Google Scholar] [CrossRef]
- Kabilijiang, W.; Wang, C.; Kato, T.; Mahemuti, R.; Li, Q.; He, Y.; Zhu, P.; Latifeike, N.; Dong, W. Research on Postearthquake Rural Housing Reconstruction and Subsequent Evaluation in Dujiangyan on the 15th Anniversary of the Wenchuan Earthquake. Nat. Hazards Rev. 2025, 26, 05025004. [Google Scholar] [CrossRef]
- Bazyar, J.; Farrokhi, M.; Salari, A.; Safarpour, H.; Khankeh, H.R. Accuracy of triage systems in disasters and mass casualty incidents; a systematic review. Arch. Acad. Emerg. Med. 2022, 10, e32. [Google Scholar]
- Yang, X.; Zheng, L.; Lü, D.; Wang, J.; Wang, S.; Su, H.; Wang, Z.; Ren, L. The snake-inspired robots: A review. Assem. Autom. 2022, 42, 567–583. [Google Scholar] [CrossRef]
- Hirose, S.; Yamada, H. Snake-like robots [Tutorial]. IEEE Robot. Autom. Mag. 2009, 16, 88–98. [Google Scholar] [CrossRef]
- Mehta, R.K.; Yadav, A.; Murphy, R.R.; Peres, S.C. Human-Robot Team Vulnerabilities under Fatigue during sUAS Disaster Response Simulations. In Proceedings of the 2024 IEEE International Symposium on Safety Security Rescue Robotics (SSRR), New York, NY, USA, 12–14 November 2024; IEEE: New York, NY, USA, 2024; pp. 98–103. [Google Scholar]
- Lin, T.H.; Huang, J.T.; Putranto, A. Integrated smart robot with earthquake early warning system for automated inspection and emergency response. Nat. Hazards 2022, 110, 765–786. [Google Scholar] [CrossRef]
- Chung, T.H.; Orekhov, V.; Maio, A. Into the robotic depths: Analysis and insights from the darpa subterranean challenge. Annu. Rev. Control Robot. Auton. Syst. 2023, 6, 477–502. [Google Scholar] [CrossRef]
- Shang, L.; Wang, H.; Si, H.; Li, Y.; Pan, T. Investigating the obstacle climbing ability of a coal mine search-and-rescue robot with a hydraulic mechanism. Appl. Sci. 2022, 12, 10485. [Google Scholar] [CrossRef]
- Orita, Y.; Takaba, K.; Fukao, T. Human tracking of a crawler robot in climbing stairs. J. Robot. Mechatron. 2021, 33, 1338–1348. [Google Scholar] [CrossRef]
- Kono, H.; Isayama, S.; Koshiji, F.; Watanabe, K.; Suzuki, H. Automatic Flipper Control for Crawler Type Rescue Robot using Reinforcement Learning. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 1473. [Google Scholar] [CrossRef]
- Ma, H.; Cheng, J.; Wang, C.; Zhang, H.; Cui, W.; Xue, X.; Mao, Q.; Liu, P.; Guo, Y.; Su, H.; et al. Research on Temporary Support Robot for the Integrated Excavation and Mining System of Section Coal Pillar. Appl. Sci. 2025, 15, 4896. [Google Scholar] [CrossRef]
- An, G.; Kang, J. Novel design of GFRP beam spring rocker-arm suspension for 6-wheeled mobile robots. Mechatronics 2025, 110, 103388. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Liang, W.; Yao, L.; Li, Y. Path planning of wheeled coal mine rescue robot based on improved A* and potential field algorithm. Coal Sci. Technol. 2024, 52, 159–170. [Google Scholar]
- Li, Q.; Cicirelli, F.; Vinci, A.; Guerrieri, A.; Qi, W.; Fortino, G. Quadruped Robots: Bridging Mechanical Design, Control, and Applications. Robotics 2025, 14, 57. [Google Scholar] [CrossRef]
- Cruz Ulloa, C.; del Cerro, J.; Barrientos, A. Mixed-reality for quadruped-robotic guidance in SAR tasks. J. Comput. Des. Eng. 2023, 10, 1479–1489. [Google Scholar] [CrossRef]
- Arunkumar, V.; Rajasekar, D.; Aishwarya, N. A review paper on mobile robots applications in search and rescue operations. Adv. Sci. Technol. 2023, 130, 65–74. [Google Scholar] [CrossRef]
- Cruz Ulloa, C.; Prieto Sánchez, G.; Barrientos, A.; Del Cerro, J. Autonomous thermal vision robotic system for victims recognition in search and rescue missions. Sensors 2021, 21, 7346. [Google Scholar] [CrossRef]
- Berdibayeva, G.; Bodin, O.; Ozhikenov, K.; Berdibayev, R. Bionic Method for Controlling Robotic Mechanisms during Search and Rescue Operations. Int. J. Mech. Eng. Robot. Res. 2021, 10, 128–136. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Zuo, L.; Gong, Y.; Lv, G.; Zhao, Q.; Gao, H. The Collaborative Multi-target Search of Multiple Bionic Robotic Fish Based on Distributed Model Predictive Control. J. Bionic Eng. 2025, 22, 1194–1210. [Google Scholar] [CrossRef]
- Seeja, G.; Doss, A.S.A.; Hency, V.B. A survey on snake-like robot locomotion. IEEE Access 2022, 10, 112100–112116. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, Z.; Yang, S.; Xiong, Y.; Zhang, D. Research on the Spiral Rolling Gait of High-Voltage Power Line Serpentine Robots Based on Improved Hopf-CPGs Model. Appl. Sci. 2025, 15, 1285. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Cui, L.; Li, J.; Wei, Q.; Xia, J. Design and experiments of a compact self-assembling mobile modular robot with joint actuation and onboard visual-based perception. Appl. Sci. 2022, 12, 3050. [Google Scholar] [CrossRef]
- Leggieri, S.; Canali, C.; Caldwell, D.G. Design of the crawler units: Toward the development of a novel hybrid platform for infrastructure inspection. Appl. Sci. 2022, 12, 5579. [Google Scholar] [CrossRef]
- Canali, C.; Pistone, A.; Ludovico, D.; Guardiani, P.; Gagliardi, R.; Verme, L.D.M.C.D.; Sofia, G.; Caldwell, D.G. Design of a novel long-reach cable-driven hyper-redundant snake-like manipulator for inspection and maintenance. Appl. Sci. 2022, 12, 3348. [Google Scholar] [CrossRef]
- Qin, G.; Wu, H.; Ji, A. Equivalent Dynamic Analysis of a Cable-Driven Snake Arm Maintainer. Appl. Sci. 2022, 12, 7494. [Google Scholar] [CrossRef]
- Bao, L.; Sun, Y.; Wang, Q.; Xie, Z. Study on head stabilization control strategy of non-wheeled snake-like robot based on inertial sensor. Appl. Sci. 2023, 13, 4477. [Google Scholar] [CrossRef]
- Kim, S.J.; Suh, J.H. Adaptive robust RBF-NN nonsingular terminal sliding mode control scheme for application to snake-like robot’s head for image stabilization. Appl. Sci. 2023, 13, 4899. [Google Scholar] [CrossRef]
- Chitikena, H.; Sanfilippo, F.; Ma, S. Robotics in search and rescue (sar) operations: An ethical and design perspective framework for response phase. Appl. Sci. 2023, 13, 1800. [Google Scholar] [CrossRef]
- Pantalone, D.; Chiara, O.; Henry, S.; Cimbanassi, S.; Gupta, S.; Scalea, T. Facing trauma and surgical emergency in space: Hemorrhagic shock. Front. Bioeng. Biotechnol. 2022, 10, 780553. [Google Scholar] [CrossRef]
- ASTM D648; Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D2240-15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D638M-96; Standard Test Method for Tensile Properties of Plastics (Metric) (Withdrawn 1998). ASTM International: West Conshohocken, PA, USA, 1996.
- ASTM D790M-93; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (Metric). ASTM International: West Conshohocken, PA, USA, 1993.
- ASTM D256-06a; Standard Test Method for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM D150-98; Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation. ASTM International: West Conshohocken, PA, USA, 1998.
- ASTM D149-97a; Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulation Materials at Industrial Power Frequencies. ASTM International: West Conshohocken, PA, USA, 2004.
- Li, Y.; Wang, L.; Liu, Y.; Zhao, Y.; Fan, Y.; Yang, M.; Yuan, R.; Zhou, F.; Zhang, Z.; Kang, H. Development and validation of a simplified prehospital triage model using neural network to predict mortality in trauma patients: The ability to follow commands, age, pulse rate, systolic blood pressure and peripheral oxygen saturation (CAPSO) model. Front. Med. 2021, 8, 810195. [Google Scholar] [CrossRef]
Items | Material Standards | Parameters |
---|---|---|
Heat distortion temperature (0.46 MPa) | ASTM Method D648 [31] | 44~57 °C |
Hardness (Shore D) | ASTM Method D2240 [32] | 76~86 Shore D |
Tensile modulus | ASTM Method D638M [33] | 2559~2678 MPa |
Tensile strength | 38~56 MPa | |
Elongation at break | 8~14% | |
Flexural strength | ASTM Method D790M [34] | 69~73 MPa |
Flexural modulus | 2670~2758 MPa | |
Notched impact strength | ASTM Method D256A [35] | 36~60 J/m |
Coefficient of thermal expansion | TMA (T < Tg) | 90~103 × 10−6/°C |
Poisson’s ratio | ASTM Method D638M | 0.4~0.44 |
Dielectric constant at 60 Hz | ASTM Method D150-98 [36] | 4.2~5.0 |
Dielectric constant at 1 KHz | 3.3~4.2 | |
Dielectric constant at 1 MHz | 3.2~4.0 | |
Insulating strength | ASTM Method D149-97a [37] | 12.8~16.1 kV/mm |
Items | Design Indicators | Experimental Conditions |
---|---|---|
Walking speed | ≮0.2 m/s | 0.28 m/s |
Minimum passable hole | 0.25 m × 0.25 m | 0.15 m × 0.15 m |
Climbing angle | ≮30° | 40° |
Obstacle crossing height | ≮0.25 m | 0.35 m |
Climbable step size | Height ≮ 0.175 m Width 0.26 m | Height 0.3 m Width 0.26 m |
Gully crossing width | ≮0.2 m | Max 0.5 m |
Turning radius | ≮0.25 m | 0.2 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, R.; Li, Z.; Lou, Y. Design of a Snake-like Robot for Rapid Injury Detection in Patients with Hemorrhagic Shock. Appl. Sci. 2025, 15, 9999. https://doi.org/10.3390/app15189999
Shi R, Li Z, Lou Y. Design of a Snake-like Robot for Rapid Injury Detection in Patients with Hemorrhagic Shock. Applied Sciences. 2025; 15(18):9999. https://doi.org/10.3390/app15189999
Chicago/Turabian StyleShi, Ran, Zhibin Li, and Yunjiang Lou. 2025. "Design of a Snake-like Robot for Rapid Injury Detection in Patients with Hemorrhagic Shock" Applied Sciences 15, no. 18: 9999. https://doi.org/10.3390/app15189999
APA StyleShi, R., Li, Z., & Lou, Y. (2025). Design of a Snake-like Robot for Rapid Injury Detection in Patients with Hemorrhagic Shock. Applied Sciences, 15(18), 9999. https://doi.org/10.3390/app15189999