Compression Failure Characteristics of Interface Section Coal Pillar Excavation and Backfill Composite Structure
Abstract
1. Introduction
2. Excavation and Backfill Composite Structure
3. ICPF Compression Damage Results and Analysis
3.1. Numerical Models and Calibration
3.2. Stress–Strain Curves
3.3. Elastic Modulus
3.4. Compressive Strength
3.5. Failure Process Analysis
4. Discussion
4.1. ICPF Damage Evolution Analysis
4.2. ICPF Composite Theory Model
4.2.1. ICPF Elastic Modulus Evolution Model
4.2.2. ICPF Compressive Strength Evolution Model
4.3. ICPF Composite Damage Pattern
4.4. ICPF Composite Brittleness Characteristics Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, S.M.; Shen, Y.J.; Song, S.J.; Liu, L.; Gu, L.J.; Wei, J.B. The changing status of coal energy and green low-carbon development under the “double carbon” target. J. China Coal Soc. 2023, 48, 2599–2612. [Google Scholar]
- Wang, S.M.; Liu, L.; Zhao, Y.J.; Zhang, B.; Wang, J.Y.; Zhu, M.B.; Wang, M.; Zhang, X.Y. New energy development in coal-fired areas under the goal of “double carbon”—A new path for future coal mine transformation and upgrading. Coal Sci. Technol. 2023, 51, 59–79. [Google Scholar]
- Feng, G.R.; Bai, J.W.; Shi, X.D.; Qi, T.Y.; Wang, P.F.; Guo, J.; Wang, S.Y.; Kang, L.X. Key column theory for chain destabilization of legacy coal column group and its application prospect. J. China Coal Soc. 2021, 46, 164–179. [Google Scholar]
- Li, J.; Feng, G.; Bai, J.; Yilmaz, E.; Zhao, H.; Li, H.; Ma, J. Thermal effect on bearing behavior and instability of coal-backfill composites. Compos. Struct. 2025, 371, 119447. [Google Scholar] [CrossRef]
- Yang, K.; Lv, X.; Liu, Q.J.; Yang, Y.Q.; Chi, X.L.; Fang, J.J.; Fu, Q.; Wang, Y.; Zhang, Z.N. Experimental study on the instability characteristics of coal pillar-artificial dam adhesions left in abandoned mines. J. Min. Saf. Eng. 2022, 39, 1071–1083. [Google Scholar]
- Zhao, B.Z.; Zhai, D.; Yang, X.; Guo, Y.X.; Liu, C.G.; Sun, H. Study on filling body-coal column bearing effect and reasonable mining parameters. Min. Res. Dev. 2020, 40, 15–21. [Google Scholar]
- Wang, F.T.; Li, G.; Ban, J.G.; Peng, X.Y.; Li, S.T.; Liu, S.F. Study on the synergistic bearing effect of deep mining filler and coal column. J. Min. Saf. Eng. 2020, 37, 311–318. [Google Scholar]
- Zhu, X.J.; Guo, G.L.; Liu, H.; Peng, X.N.; Yang, X.Y. Stability analysis of the composite support pillar in backfill-strip mining using particle flow simulation method. Environ. Earth Sci. 2022, 81, 124. [Google Scholar] [CrossRef]
- Chen, S.J.; Zhang, J.W.; Yin, D.W.; Liu, Y.; Shen, B.T.; Ren, K.Q.; Cheng, W.M. Mechanism and numerical simulation study on the performance of coal column lifting by filling wall. J. Min. Saf. Eng. 2017, 34, 268–275. [Google Scholar]
- Hu, B.N.; Li, H.Y. Numerical simulation study of coal mine filler action and its mechanism analysis. Coal Sci. Technol. 2010, 38, 13–16. [Google Scholar]
- Yu, X.; Tan, Y.Y.; Song, W.D.; Wang, J. Study on the strength and damage mechanism of filler-encapsulated rock assemblages. J. China Univ. Min. Technol. 2023, 52, 30–42. [Google Scholar]
- Li, X.; Zhou, J.; Yang, Z.; Li, H.; Bu, J.R.; Liu, Z.Y.; Wang, Y.R. Time-frequency evolution of electromagnetic radiation in deformation and fracture of composite coal-rock under different loading rates. Constr. Build. Mater. 2024, 453, 139030. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, C.P.; Liu, B.; Liu, Y.; Zhang, N.; Wang, H.Y. Numerical investigation on crack development and energy evolution of stressed coal-rock combination. Int. J. Rock Mech. Min. 2020, 133, 104417. [Google Scholar] [CrossRef]
- Fu, J.X.; Zhang, B.Y.; Tan, Y.Y.; Wang, J.; Song, W.D. Study on creep characteristics and damage evolution of surrounding rock and filling body (SR-FB) composite specimens. J. Mater. Res. Technol. 2023, 23, 5382–5399. [Google Scholar] [CrossRef]
- Xu, B.; Li, Y.L.; Wang, S.S.; Luo, H.H.; Lu, B. Study on the strength characteristics and failure characteristics of the composite load-bearing structure in the cemented filling field. Constr. Build. Mater. 2022, 330, 127242. [Google Scholar] [CrossRef]
- An, B.F.; Zhang, J.X.; Li, M.; Huang, P. Stability of pillars in backfilling mining working face to recover room mining standing pillars. J. Min. Saf. Eng. 2016, 33, 238–243. [Google Scholar]
- Jiang, F.X.; Chen, Y.; Li, D.; Wang, C.W.; Gai, D.C.; Zhu, S.T. Study on mechanical mechanism of rock burst at isolated backfilling working face during primary mining. J. China Coal Soc. 2019, 44, 151–159. [Google Scholar]
- Yang, L.; Gao, F.Q.; Wang, X.Q.; Li, J.Z. Energy evolution law and failure mechanism of coal-rock combined specimen. J. China Coal Soc. 2019, 44, 3894–3902. [Google Scholar]
- Wang, X.L.; Li, Z.F.; Guo, J.P.; Lu, C.W.; Jiang, H.Q.; Mei, J.W. Experimental and numerical investigations on damage mechanical behaviors of surrounding rock-backfill composite under uniaxial compression. Constr. Build. Mater. 2024, 417, 135210. [Google Scholar] [CrossRef]
- Song, H.Q.; Zuo, J.P.; Liu, H.Y.; Zuo, S.H. The strength characteristics and progressive failure mechanism of soft rock-coal combination samples with consideration given to interface effects. Int. J. Rock Mech. Min. 2021, 138, 104593. [Google Scholar] [CrossRef]
- Zuo, J.P.; Song, H.Q. Energy evolution law and differential energy destabilization model of coal-rock assemblage. J. China Coal Soc. 2022, 47, 3037–3051. [Google Scholar]
- Zhai, W.L.; He, F.L.; Song, J.Y.; Wu, Y.H.; Xu, X.H.; Wang, D.Q.; Zhang, J.L.; Li, L. Strong strata behavior mechanism and roof cutting control of small pillar gob-side roadway in extra-thick coal seam. Bull. Eng. Geol. Environ. 2024, 83, 77. [Google Scholar] [CrossRef]
- Chen, Y.; Zuo, J.P.; Song, H.Q.; Feng, L.L.; Shao, G.Y. Study on cyclic plus and minus deformation and crack evolution law of coal-rock assemblage. J. Min. Saf. Eng. 2018, 35, 26–833. [Google Scholar]
- Ma, S.Z.; Liu, K.W.; Guo, T.F.; Yang, J.C.; Li, X.D.; Yan, Z.X. Experimental and numerical investigation on the mechanical characteristics and failure mechanism of cracked coal & rock-like combined sample under uniaxial compression. Theor. Appl. Fract. Mec. 2022, 122, 103583. [Google Scholar]
- Su, G.S.; Huang, J.W.; Liu, Y.N. Crack propagation mechanism of fissured sandstone subjected to uniaxial cyclic compression test. Theor. Appl. Fract. Mec. 2025, 139, 105049. [Google Scholar] [CrossRef]
- Jiang, Q.; Xin, J.; Xu, D.P.; Liu, Q. Shear failure process of rectangular tunnel: Physical experimental test and numerical back-analysis. Theor. Appl. Fract. Mec. 2022, 120, 103384. [Google Scholar] [CrossRef]
- Alam, S.Y.; Loukili, A. Effect of micro-macro crack interaction on softening behaviour of concrete fracture. Int. J. Solids Struct. 2020, 182, 34–45. [Google Scholar] [CrossRef]
- Wang, J.; Fu, J.X.; Song, W.D.; Zhang, Y.F. Mechanical properties, damage evolution, and constitutive model of rock-encased backfill under uniaxial compression. Constr. Build. Mater. 2021, 285, 122898. [Google Scholar] [CrossRef]
- Gong, F.Q.; Zhang, P.L.; Luo, S.; Li, J.C.; Huang, D. Theoretical damage characterisation and damage evolution process of intact rocks based on linear energy dissipation law under uniaxial compression. Int. J. Rock Mech. Min. 2021, 146, 104858. [Google Scholar] [CrossRef]
- Chen, Z.Q.; He, C.; Ma, G.Y.; Xu, G.W.; Ma, C.C. Energy damage evolution mechanism of rock and its application to brittleness evaluation. Rock Mech. Rock Eng. 2019, 52, 1265–1274. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, G.Y.; Xu, L.; Zhou, J.; Huang, X.L. Mechanical property evolution model of cemented tailings-rock backfill considering strengthening and weakening effects. Constr. Build. Mater. 2023, 377, 131081. [Google Scholar] [CrossRef]
- Zhao, K.; He, Z.W.; Zhou, Y.; Yan, Y.J.; Wan, W.L.; Ning, F.J.; Huang, M.; Wang, J.Q. Synergistic deformation in a combination of cemented paste backfill and rocks. Constr. Build. Mater 2022, 317, 125943. [Google Scholar] [CrossRef]
- Li, C.J.; Xu, Y.; Feng, M.M.; Pan, B. Deformation law and damage mechanism of coal-like rock assemblages under uniaxial loading. J. China Coal Soc. 2020, 45, 1773–1782. [Google Scholar]
- Zhao, B.C.; Zhai, D.; Chen, P.; Wei, Q.M.; Wang, R.F. Damage evolution law and crack expansion characteristics of gangue cemented filler. J. Xi’an Univ. Sci. Technol. 2023, 43, 18–27. [Google Scholar]
- Wang, Y.; Li, X.; Wu, Y.F.; Ben, Y.X.; Li, S.D.; He, J.M.; Zhang, B. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks. Chin. J. Rock Mech. Eng. 2014, 33, 264–275. [Google Scholar]
- Zhou, H.; Meng, F.Z.; Zhang, C.Q.; Xu, R.C.; Lu, J.J. Quantitative evaluation of rock brittleness based on stress-strain curves. Chin. J. Rock Mech. Eng. 2014, 33, 1114–1122. [Google Scholar]
- Chen, G.Q.; Zhang, Y.; Xu, Q.; Wu, X.Z.; Meng, K.; Fan, H.Z. A novel brittle evaluation method considering the difference in energy evolution during rock failure process. Eng. Fail. Anal. 2025, 170, 109280. [Google Scholar] [CrossRef]
No | Excavation and Backfill Width/mm | Excavation and Backfill Height/mm | Backfill Strength/MPa | |
---|---|---|---|---|
1 | 20 | 40 | I | 6.26 |
2 | 40 | |||
3 | 60 | |||
4 | 80 | |||
5 | 100 | |||
6 | 20 | II | 5.15 | |
7 | 40 | |||
8 | 60 | |||
9 | 80 | |||
10 | 100 | |||
11 | 20 | III | 3.98 | |
12 | 40 | |||
13 | 60 | |||
14 | 80 | |||
15 | 100 | |||
16 | 20 | IV | 2.48 | |
17 | 40 | |||
18 | 60 | |||
19 | 80 | |||
20 | 100 |
Mechanical Parameters | Indoor Experiment | Numerical Simulation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coal | Backfill Strength | Coal | Backfill Strength | |||||||
I | II | III | IV | I | II | III | IV | |||
UCS, MPa | 21.28 | 6.32 | 5.12 | 3.96 | 2.55 | 21.24 | 6.26 | 5.15 | 3.98 | 2.48 |
E, GPa | 1.78 | 1.032 | 0.55 | 0.611 | 0.219 | 1.86 | 0.96 | 0.5 | 0.6 | 0.24 |
Fine-View Parameters | Coal | Backfill Strength I | Backfill Strength II | Backfill Strength III | Backfill Strength IV |
---|---|---|---|---|---|
Minimum particle radius, Rmin/mm | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 |
Maximum-to-minimum radius ratio Rmax/Rmin | 16 | 16 | 16 | 16 | 16 |
Density, ρ/(kg/m3) | 1340 | 2153 | 2044 | 1988 | 1773 |
Friction coefficient, μ | 0.5 | 0.623 | 0.623 | 0.623 | 0.623 |
Contact type | B-B | B-B | B-B | BB | B-B |
Effective contact modulus, Ec/GPa | 0.93 | 0.48 | 0.25 | 0.3 | 0.12 |
Effective contact stiffness ratio, kn/ks | 1.5 | 1.5 | 1.4 | 1.6 | 1.4 |
Parallel bond modulus, Ec′/GPa | 0.93 | 0.48 | 0.25 | 0.3 | 0.1 |
Parallel bond stiffness ratio, Kn′/ks′ | 1.5 | 1.5 | 1.4 | 1.6 | 1.4 |
Parallel bond normal stress (σn)/MPa | 11.6 | 4.9 | 4.4 | 3.2 | 1.6 |
Parallel bond shear stress (τn)/MPa | 23.2 | 9.6 | 3.34 | 2.4 | 1.28 |
Specimen | Initial Model | Crack Initiation Stress | Peak Strength | Residual Stress |
---|---|---|---|---|
Excavation and backfill width of 20 mm | ||||
Excavation and backfill width of 40 mm | ||||
Excavation and backfill width of 60 mm | ||||
Excavation and backfill width of 80 mm | ||||
Excavation and backfill width of 100 mm |
Sample Number (Rock–Backfill) | UCS/MPa | E/GPa | ||
---|---|---|---|---|
Original Value | Predicted Value | Original Value | Predicted Value | |
1:4 | 2.236 | 2.261 | 0.38 | 0.34 |
1:8 | 1.296 | 1.349 | 0.21 | 0.26 |
1:10 | 0.402 | 0.446 | 0.1 | 0.11 |
Specimen (Excavation and Backfill Width) | Backfill Strength I | Backfill Strength II | Backfill Strength III | Backfill Strength IV |
---|---|---|---|---|
20 mm | ||||
40 mm | ||||
60 mm | ||||
80 mm | ||||
100 mm |
Specimen No | Brittleness Index | Specimen No | Brittleness Index | Specimen No | Brittleness Index | Specimen No | Brittleness Index | Specimen No | Brittleness Index |
---|---|---|---|---|---|---|---|---|---|
ICPF-20-I | 1.01 | ICPF-40-I | 1.13 | ICPF-60-I | 1.06 | ICPF-80-I | 1.20 | ICPF-100-I | 1.15 |
ICPF-20-II | 1.08 | ICPF-40-II | 1.09 | ICPF-60-II | 1.38 | ICPF-80-II | 1.62 | ICPF-100-II | 1.22 |
ICPF-20-III | 1.07 | ICPF-40-III | 1.14 | ICPF-60-III | 1.49 | ICPF-80-III | 1.99 | ICPF-100-III | 1.60 |
ICPF-20-IV | 1.20 | ICPF-40-IV | 1.25 | ICPF-60-IV | 1.64 | ICPF-80-IV | 2.16 | ICPF-100-IV | 1.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Zhai, D.; Chen, P.; Chen, S. Compression Failure Characteristics of Interface Section Coal Pillar Excavation and Backfill Composite Structure. Appl. Sci. 2025, 15, 9931. https://doi.org/10.3390/app15189931
Zhao B, Zhai D, Chen P, Chen S. Compression Failure Characteristics of Interface Section Coal Pillar Excavation and Backfill Composite Structure. Applied Sciences. 2025; 15(18):9931. https://doi.org/10.3390/app15189931
Chicago/Turabian StyleZhao, Bingchao, Di Zhai, Pan Chen, and Shangyinggang Chen. 2025. "Compression Failure Characteristics of Interface Section Coal Pillar Excavation and Backfill Composite Structure" Applied Sciences 15, no. 18: 9931. https://doi.org/10.3390/app15189931
APA StyleZhao, B., Zhai, D., Chen, P., & Chen, S. (2025). Compression Failure Characteristics of Interface Section Coal Pillar Excavation and Backfill Composite Structure. Applied Sciences, 15(18), 9931. https://doi.org/10.3390/app15189931