VIS-Light-Induced Degradation of Street Art Paints and Organic Pigments
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Light Aging
2.3. Methods
3. Results and Discussion
3.1. Pigments Pellets
3.2. Commercial Paint Mock-Ups on Glass Slides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOPs | Synthetic Organic Pigments |
SORS | Spatially Offset Raman Spectroscopy |
FTIR | Fourier-Transform InfraRed |
ATR | Attenuated Total Reflectance |
PV | Pigment Violet |
PR | Pigment Red |
PY | Pigment Yellow |
PO | Pigment Orange |
DAC | Diamond Anvil Cell |
PCA | Principal Component Analysis |
MA | Methacrylate |
UV | Ultraviolet |
RH | Relative Humidity |
CFL | Compact Fluorescent Lamp |
HPLC-MS/MS | High-Performance Liquid Chromatography-coupled Tandem Mass Spectrometry |
References
- Pagnin, L.; Guarnieri, N.; Izzo, F.C.; Goidanich, S.; Toniolo, L. Protecting Street Art from Outdoor Environmental Threats: What Are the Challenges? Coatings 2023, 13, 2044. [Google Scholar] [CrossRef]
- Groeneveld, I.; Kanelli, M.; Ariese, F.; van Bommel, M.R. Parameters That Affect the Photodegradation of Dyes and Pigments in Solution and on Substrate—An Overview. Dye. Pigment. 2023, 210, 110999. [Google Scholar] [CrossRef]
- Mezzadri, P. Contemporary Murals in the Street and Urban Art Field: Critical Reflections between Preventive Conservation and Restoration of Public Art. Heritage 2021, 4, 2515–2525. [Google Scholar] [CrossRef]
- Guarnieri, N.; Di Benedetto, A.; Comelli, D.; Mirani, F.; Dellasega, D.; Pagnin, L.; Goidanich, S.; Toniolo, L. Rapid Chromatic Alteration of Street Art: Mechanisms of Deterioration of the Painting Materials of the 20 Years of Freedom and Democracy Mural. Dye. Pigment. 2025, 239, 112733. [Google Scholar] [CrossRef]
- Alonso Villar, E.M.; Rivas Brea, M.T.; Pozo Antonio, J.S. Resistance to Artificial Daylight of Paints Used in Urban Artworks. Influence of Paint Composition and Substrate. Prog. Org. Coat. 2021, 154, 106180. [Google Scholar] [CrossRef]
- Anghelone, M.; Jembrih-Simbürger, D.; Pintus, V.; Schreiner, M. Photostability and Influence of Phthalocyanine Pigments on the Photodegradation of Acrylic Paints under Accelerated Solar Radiation. Polym. Degrad. Stab. 2017, 146, 13–23. [Google Scholar] [CrossRef]
- Marazioti, V.; Douvas, A.M.; Vouvoudi, E.C.; Bikiaris, D.; Papadokostaki, K.; Nioras, D.; Gogolides, E.; Orfanoudakis, S.; Stergiopoulos, T.; Boyatzis, S.; et al. The Condition of Contemporary Murals in Sun-Exposed Urban Environments: A Model Study Based on Spray-Painted Mock-Ups and Simulated Light Ageing. Heritage 2024, 7, 3932–3959. [Google Scholar] [CrossRef]
- Doménech-Carbó, M.T.; Silva, M.F.; Aura-Castro, E.; Fuster-López, L.; Kröner, S.; Martínez-Bazán, M.L.; Más-Barberá, X.; Mecklenburg, M.F.; Osete-Cortina, L.; Doménech, A.; et al. Study of Behaviour on Simulated Daylight Ageing of Artists’ Acrylic and Poly(Vinyl Acetate) Paint Films. Anal. Bioanal. Chem. 2011, 399, 2921–2937. [Google Scholar] [CrossRef] [PubMed]
- Cimino, D.; Lamuraglia, R.; Saccani, I.; Berzioli, M.; Izzo, F.C. Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities. Heritage 2022, 5, 581–609. [Google Scholar] [CrossRef]
- Sabatini, F.; La Nasa, J.; Degano, I.; Campanella, B.; Legnaioli, S.; Saccani, I.; Modugno, F. Fluorescent Paints in Contemporary Murals: A Case Study. Heritage 2023, 6, 5689–5699. [Google Scholar] [CrossRef]
- Rivas, T.; Alonso-Villar, E.M.; Pozo-Antonio, J.S. Forms and Factors of Deterioration of Urban Art Murals under Humid Temperate Climate; Influence of Environment and Material Properties. Eur. Phys. J. Plus 2022, 137, 1257. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Alonso-Villar, E.M.; Rivas, T.; Márquez, I. Evaluation of a Protective Acrylic Finish Applied to Surfaces Painted with Acrylic Paints for Outdoor or Indoor Uses. Dye. Pigment. 2023, 212, 111141. [Google Scholar] [CrossRef]
- Magrini, D.; Bracci, S.; Cantisani, E.; Conti, C.; Rava, A.; Sansonetti, A.; Shank, W.; Colombini, M. A Multi-Analytical Approach for the Characterization of Wall Painting Materials on Contemporary Buildings. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 39–45. [Google Scholar] [CrossRef]
- Batchelor, S.N.; Carr, D.; Coleman, C.E.; Fairclough, L.; Jarvis, A. The Photofading Mechanism of Commercial Reactive Dyes on Cotton. Dye. Pigment. 2003, 59, 269–275. [Google Scholar] [CrossRef]
- Anghelone, M.; Stoytschew, V.; Jembrih-Simbürger, D.; Schreiner, M. Spectroscopic Methods for the Identification and Photostability Study of Red Synthetic Organic Pigments in Alkyd and Acrylic Paints. Microchem. J. 2018, 139, 155–163. [Google Scholar] [CrossRef]
- Anghelone, M.; Jembrih-Simbürger, D.; Schreiner, M. Influence of Phthalocyanine Pigments on the Photo-Degradation of Alkyd Artists’ Paints under Different Conditions of Artificial Solar Radiation. Polym. Degrad. Stab. 2016, 134, 157–168. [Google Scholar] [CrossRef]
- Ciccola, A.; Guiso, M.; Domenici, F.; Sciubba, F.; Bianco, A. Azo-Pigments Effect on UV Degradation of Contemporary Art Pictorial Film: A FTIR-NMR Combination Study. Polym. Degrad. Stab. 2017, 140, 74–83. [Google Scholar] [CrossRef]
- La Nasa, J.; Campanella, B.; Sabatini, F.; Rava, A.; Shank, W.; Lucero-Gomez, P.; De Luca, D.; Legnaioli, S.; Palleschi, V.; Colombini, M.P.; et al. 60 Years of Street Art: A Comparative Study of the Artists’ Materials through Spectroscopic and Mass Spectrometric Approaches. J. Cult. Herit. 2021, 48, 129–140. [Google Scholar] [CrossRef]
- Krmpotić, M.; Jembrih-Simbürger, D.; Siketić, Z.; Marković, N.; Anghelone, M.; Tadić, T.; Plavčić, D.; Malloy, M.; Radović, I.B. Identification of Synthetic Organic Pigments (SOPs) Used in Modern Artist’s Paints with Secondary Ion Mass Spectrometry with MeV Ions. Anal. Chem. 2020, 92, 9287–9294. [Google Scholar] [CrossRef] [PubMed]
- Bosi, A.; Ciccola, A.; Serafini, I.; Guiso, M.; Ripanti, F.; Postorino, P.; Curini, R.; Bianco, A. Street Art Graffiti: Discovering Their Composition and Alteration by FTIR and Micro-Raman Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117474. [Google Scholar] [CrossRef]
- Marazioti, V.; Douvas, A.M.; Katsaros, F.; Koralli, P.; Chochos, C.; Gregoriou, V.G.; Boyatzis, S.; Facorellis, Y. Chemical Characterisation of Artists’ Spray-Paints: A Diagnostic Tool for Urban Art Conservation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122375. [Google Scholar] [CrossRef]
- Rousaki, A.; Vandenabeele, P.; Berzioli, M.; Saccani, I.; Fornasini, L.; Bersani, D. An In-and-out-the-Lab Raman Spectroscopy Study on Street Art Murals from Reggio Emilia in Italy. Eur. Phys. J. Plus 2022, 137, 252. [Google Scholar] [CrossRef]
- Sabatini, F.; Albertin, F.; Doherty, B.; Monico, L.; Rosi, F.; Buti, D.; Romani, A.; Pecci, A.; Abate, N.; Sileo, M.; et al. Unveiling Street Art: A Multimodal and Multitechnique Approach for Analyzing and Mapping Painting Materials on Large Murals. Proc. Natl. Acad. Sci. USA 2025, 122, e2504918122. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, N.; Pagnin, L.; Berti, L.; Goidanich, S.; Gulotta, D.; Izzo, F.C.; Toniolo, L. Preserving the Contemporary Mural “Musica Popolare” by Orticanoodles in Milan, Italy: Deterioration Processes and Protection Performance of Commercial Coatings. J. Cult. Herit. 2025, 75, 326–332. [Google Scholar] [CrossRef]
- Pellis, G.; Bertasa, M.; Ricci, C.; Scarcella, A.; Croveri, P.; Poli, T.; Scalarone, D. A Multi-Analytical Approach for Precise Identification of Alkyd Spray Paints and for a Better Understanding of Their Ageing Behaviour in Graffiti and Urban Artworks. J. Anal. Appl. Pyrolysis 2022, 165, 105576. [Google Scholar] [CrossRef]
- Ghelardi, E.; Degano, I.; Colombini, M.P.; Mazurek, J.; Schilling, M.; Khanjian, H.; Learner, T. A Multi-Analytical Study on the Photochemical Degradation of Synthetic Organic Pigments. Dye. Pigment. 2015, 123, 396–403. [Google Scholar] [CrossRef]
- Papliaka, Z.E.; Andrikopoulos, K.S.; Varella, E.A. Study of the Stability of a Series of Synthetic Colorants Applied with Styrene-Acrylic Copolymer, Widely Used in Contemporary Paintings, Concerning the Effects of Accelerated Ageing. J. Cult. Herit. 2010, 11, 381–391. [Google Scholar] [CrossRef]
- Winston, P.W.; Bates, D.H. Saturated Solutions For the Control of Humidity in Biological Research. Ecology 1960, 41, 232–237. [Google Scholar] [CrossRef]
- ENEA (Agenzia Nazionale per le Nuove Tecnologie, L’energia e lo Sviluppo Economico Sostenibile) Atlante Italiano Della Radiazione Solare. Available online: https://www.solaritaly.enea.it/CalcRggmmNorm/Calcola3.php (accessed on 1 March 2025).
- Guan, L.; Berrill, T.; Brown, R.J. Measurement of Actual Efficacy of Compact Fluorescent Lamps (CFLs). Energy Build. 2015, 86, 601–607. [Google Scholar] [CrossRef]
- EN ISO/CIE 11664-4:2019; Colorimetry—Part 4: CIE 1976 L*a*b* Colour Space. International Organization for Standardization: Geneva, Switzerland, 2019.
- UNI EN 15886:2010; Conservation of Cultural Property—Test Methods—Colour Measurements of Surfaces. European Committee for Standardization: Brussels, Belgium, 2010.
- Chércoles Asensio, R.; San Andrés Moya, M.; de la Roja, J.M.; Gómez, M. Analytical Characterization of Polymers Used in Conservation and Restoration by ATR-FTIR Spectroscopy. Anal. Bioanal. Chem. 2009, 395, 2081–2096. [Google Scholar] [CrossRef]
- Pintus, V.; Wei, S.; Schreiner, M. Accelerated UV Ageing Studies of Acrylic, Alkyd, and Polyvinyl Acetate Paints: Influence of Inorganic Pigments. Microchem. J. 2016, 124, 949–961. [Google Scholar] [CrossRef]
- Fu, J.; Liu, W.; Hao, Z.; Wu, X.; Yin, J.; Panjiyar, A.; Liu, X.; Shen, J.; Wang, H. Characterization of a Low Shrinkage Dental Composite Containing Bismethylene Spiroorthocarbonate Expanding Monomer. Int. J. Mol. Sci. 2014, 15, 2400–2412. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.H.; Young, A.M. Modelling ATR-FTIR Spectra of Dental Bonding Systems to Investigate Composition and Polymerisation Kinetics. Materials 2021, 14, 760. [Google Scholar] [CrossRef]
- Mooney, E.F. The Infrared Spectra of Chlorobenzene and Bromobenzene Derivatives—III. Toluenes. Spectrochim. Acta 1964, 20, 1343–1348. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Wang, X. FTIR Analysis of the Functional Group Composition of Coal Tar Residue Extracts and Extractive Residues. Appl. Sci. 2023, 13, 5162. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Weber, J.; Schreiner, M. Photodegradation Kinetics of Alkyd Paints: The Influence of Varying Amounts of Inorganic Pigments on the Stability of the Synthetic Binder. Front. Mater. 2020, 7, 600887. [Google Scholar] [CrossRef]
- Vieira, M.; Melo, M.J.; Conti, C.; Pozzi, F. A Combined Approach to the Vibrational Characterization of Medieval Paints on Parchment: Handheld Raman Spectroscopy and Micro-SORS. J. Raman Spectrosc. 2024, 55, 263–275. [Google Scholar] [CrossRef]
- Botteon, A.; Kim, W.-H.; Colombo, C.; Realini, M.; Castiglioni, C.; Matousek, P.; Kim, B.-M.; Kwon, T.-H.; Conti, C. Non-Destructive Monitoring of Dye Depth Profile in Mesoporous TiO2 Electrodes of Solar Cells with Micro-SORS. Anal. Chem. 2022, 94, 2966–2972. [Google Scholar] [CrossRef] [PubMed]
- RMP00052, Calcium Carbonate, Reference Collections, Museum of Fine Arts, Boston|IRUG Library. Available online: http://irug.org/jcamp-details?id=3484 (accessed on 25 August 2025).
- ROD00563, Pigment Red 112 (PR112), Naphthol AS, CI12370, Royal Institute for Cultural Heritage (KIK/IRPA), IRUG Library. Available online: http://irug.org/jcamp-details?id=6622 (accessed on 25 August 2025).
- Scherrer, N.C.; Stefan, Z.; Francoise, D.; Annette, F.; Renate, K. Synthetic Organic Pigments of the 20th and 21st Century Relevant to Artist’s Paints: Raman Spectra Reference Collection. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2009, 73, 505–524. [Google Scholar] [CrossRef]
- Salomon, R. Evolutionary Algorithms and Gradient Search: Similarities and Differences. IEEE Trans. Evol. Comput. 1998, 2, 45–55. [Google Scholar] [CrossRef]
- IOD00367, Pigment Red 112 (PR112), Naphthol AS, Azo, CI12370, Interactive, PMA, IRUG Spectrum Database. Available online: http://irug.org/jcamp-details?id=568 (accessed on 27 May 2025).
- IMP00108, Calcium Carbonate, Anhydrous Normal Carbonate, CaCO2, PMA, Interactive IRUG Spectrum Database. Available online: http://irug.org/jcamp-details?id=463 (accessed on 27 May 2025).
- IMP00024, Gypsum (Ca(SO4)*2H2O), GCI, Interactive IRUG Spectrum Database. Available online: http://irug.org/jcamp-details?id=220 (accessed on 27 May 2025).
- ROD00393, Pigment Violet 23 (PV23), Dioxazine, Polycyclic, CI51319, Royal Institute for Cultural Heritage, KIK/IRPA, IRUG Database. Available online: http://www.irug.org/jcamp-details?id=6416 (accessed on 27 August 2025).
- Lux, A.; Realini, M.; Botteon, A.; Maiwald, M.; Müller, A.; Sumpf, B.; Miliani, C.; Matousek, P.; Strobbia, P.; Conti, C. Advanced Portable Micro-SORS Prototype Coupled with SERDS for Heritage Science. Analyst 2024, 149, 2317–2327. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.F.; Edwards, H.G.M.; Korsakov, A.; de Oliveira, L.F.C. Revisiting the Raman Spectra of Carbonate Minerals. Minerals 2023, 13, 1358. [Google Scholar] [CrossRef]
- Germinario, G.; van der Werf, I.D.; Sabbatini, L. Chemical Characterisation of Spray Paints by a Multi-Analytical (Py/GC–MS, FTIR, μ-Raman) Approach. Microchem. J. 2016, 124, 929–939. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Moens, L.; Edwards, H.G.M.; Dams, R. Raman Spectroscopic Database of Azo Pigments and Application to Modern Art Studies. J. Raman Spectrosc. 2000, 31, 509–517. [Google Scholar] [CrossRef]
- Mosca, S.; Conti, C.; Stone, N.; Matousek, P. Spatially Offset Raman Spectroscopy. Nat. Rev. Methods Primers 2021, 1, 21. [Google Scholar] [CrossRef]
Name | Type | Composition | C.I. Pigment |
---|---|---|---|
Red paint | Paint on glass slide | Acrylic vinyl binder + calcite + kaolinite + PR112 | Naphthol Red AS-D C.I. 12370 |
Orange paint | Paint on glass slide | Acrylic vinyl binder + calcite + kaolinite + PO5 | Hansa Orange RN C.I. 12075 |
PR112 55400 | Pigment pellet | PR112 + CaCO3 | Naphthol Red AS-D C.I. 12370 |
PR112 55300 | Pigment pellet | PR112 + CaCO3 + CaSO4·2H2O | Naphthol Red AS-D C.I. 12370 |
PO5 55200 | Pigment pellet | PO5 + CaCO3 | Hansa Orange RN C.I. 12075 |
PY83 55125 | Pigment pellet | PY83 + CaCO3 | Diarylide Yellow HR C.I. 21108 |
PY74 55100 | Pigment pellet | PY74 + CaCO3 | Arylide Yellow 5GX C.I. 11741 |
PV23 55900 | Pigment pellet | PV23 + CaCO3 | Dioxazine Violet C.I. 51319 |
Environment | RH Mean (%) ± SD | T Mean (°C) ± SD |
---|---|---|
Light chamber without RH control | 41.2 ± 5.9 | 35.6 ± 3.0 |
Light chamber at high RH environment | 80.5 ± 11.5 | 33.8 ± 5.2 |
Laboratory environment | 67.4 ± 0.9 | 24.5 ± 1.4 |
Ref Unaged | Env. A: High RH | Env. B: No Control RH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | HEX | L* | a* | b* | HEX | ΔEA | L* | a* | b* | HEX | ΔEB | |
PR112 55400 | 52 | 71 | 18 | D54164 | 64 | 56 | 13 | E67489 | 19.8 | 53 | 70 | 26 | D7455C | 8.1 |
PR112 55300 | 57 | 77 | 35 | EC4558 | 60 | 67 | 22 | E95C71 | 16.7 | 56 | 74 | 34 | E54656 | 3.3 |
PO5 55200 | 67 | 59 | 50 | F87857 | 66 | 55 | 41 | F07B62 | 9.9 | 61 | 64 | 52 | EC6146 | 8.1 |
PY83 55125 | 80 | 26 | 89 | FFB735 | 79 | 28 | 88 | FEB334 | 2.4 | 80 | 25 | 81 | FFB844 | 8.1 |
PY74 55100 | 89 | 7 | 67 | FFDB6F | 89 | 8 | 61 | FED979 | 6.1 | 89 | 7 | 58 | FEDA7D | 9.0 |
PV23 55900 | 35 | 44 | −53 | 6936A3 | 82 | 8 | −5 | D4C7D4 | 76.2 | 74 | 12 | −14 | C0AFCD | 63.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarnieri, N.; Conti, C.; Passoni, M.; Ambrogioni, K.; Guzmán García Lascurain, P.; Goidanich, S.; Toniolo, L. VIS-Light-Induced Degradation of Street Art Paints and Organic Pigments. Appl. Sci. 2025, 15, 10188. https://doi.org/10.3390/app151810188
Guarnieri N, Conti C, Passoni M, Ambrogioni K, Guzmán García Lascurain P, Goidanich S, Toniolo L. VIS-Light-Induced Degradation of Street Art Paints and Organic Pigments. Applied Sciences. 2025; 15(18):10188. https://doi.org/10.3390/app151810188
Chicago/Turabian StyleGuarnieri, Nicolò, Claudia Conti, Matteo Passoni, Kevin Ambrogioni, Paulina Guzmán García Lascurain, Sara Goidanich, and Lucia Toniolo. 2025. "VIS-Light-Induced Degradation of Street Art Paints and Organic Pigments" Applied Sciences 15, no. 18: 10188. https://doi.org/10.3390/app151810188
APA StyleGuarnieri, N., Conti, C., Passoni, M., Ambrogioni, K., Guzmán García Lascurain, P., Goidanich, S., & Toniolo, L. (2025). VIS-Light-Induced Degradation of Street Art Paints and Organic Pigments. Applied Sciences, 15(18), 10188. https://doi.org/10.3390/app151810188