Optimal Cutoff Value of the Tumor Mutation Burden for Immune Checkpoint Inhibitors: A Lesson from 175 Pembrolizumab-Treated Cases Among 6403 Breast Cancer Patients
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and C-CAT Database
2.2. Multi-CGP Tests
2.3. TMB Score and MSI Status
2.4. Gene Alterations
2.5. The Response to Pembrolizumab and the Optimal Cutoff Value for TMB-High Status
2.6. Statistical Analyses
3. Results
3.1. The Frequency of TMB-High Status
3.2. Patient Background
3.3. Genomic Abnormalities
3.4. TMB Status
3.5. Correlation Between TMB Status and the Therapeutic Efficacy of Pembrolizumab
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlson, R.W.; Allred, D.C.; Anderson, B.O.; Burstein, H.J.; Carter, W.B.; Edge, S.B.; Erban, J.K.; Farrar, W.B.; Goldstein, L.J.; Gradishar, W.J.; et al. Breast Cancer. Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2009, 7, 122–192. [Google Scholar] [CrossRef]
- Lebert, J.M.; Lester, R.; Powell, E.; Seal, M.; McCarthy, J. Advances in the Systemic Treatment of Triple-Negative Breast Cancer. Curr. Oncol. 2018, 25, S142–S150. [Google Scholar] [CrossRef]
- Kawabata, K.; Nishikubo, H.; Kanei, S.; Aoyama, R.; Tsukada, Y.; Sano, T.; Imanishi, D.; Sakuma, T.; Maruo, K.; Yamamoto, Y.; et al. Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan’s National Database. Genes 2024, 15, 792. [Google Scholar] [CrossRef]
- Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; et al. Pembrolizumab Monotherapy for Previously Treated Metastatic Triple-Negative Breast Cancer: Cohort A of the Phase II KEYNOTE-086 Study. Ann. Oncol. 2019, 30, 397–404. [Google Scholar] [CrossRef]
- Mao, Y.; Xie, H.; Lv, M.; Yang, Q.; Shuang, Z.; Gao, F.; Li, S.; Zhu, L.; Wang, W. The Landscape of Objective Response Rate of Anti-PD-1/L1 Monotherapy across 31 Types of Cancer: A System Review and Novel Biomarker Investigating. Cancer Immunol. Immunother. 2023, 72, 2483–2498. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Velichinskii, R.; Lesh, R.W.; Usman, A.; Kubiak, M.; Bansal, P.; Borghaei, H.; Edelman, M.J.; Boumber, Y. Existing and Emerging Biomarkers for Immune Checkpoint Immunotherapy in Solid Tumors. Adv. Ther. 2019, 36, 2638–2678. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Jain, E.; Cohen, O.; Kim, D.; Buendia-Buendia, J.; Winer, E.; Lin, N.; Tolaney, S.M.; Wagle, N. Prevalence and Mutational Determinants of High Tumor Mutation Burden in Breast Cancer. Ann. Oncol. 2020, 31, 387–394. [Google Scholar] [CrossRef]
- McGrail, D.J.; Pilié, P.G.; Rashid, N.U.; Voorwerk, L.; Slagter, M.; Kok, M.; Jonasch, E.; Khasraw, M.; Heimberger, A.B.; Lim, B.; et al. High Tumor Mutation Burden Fails to Predict Immune Checkpoint Blockade Response across All Cancer Types. Ann. Oncol. 2021, 32, 661–672. [Google Scholar] [CrossRef]
- Kohno, T.; Kato, M.; Kohsaka, S.; Sudo, T.; Tamai, I.; Shiraishi, Y.; Okuma, Y.; Ogasawara, D.; Suzuki, T.; Yoshida, T.; et al. C-CAT: The National Datacenter for Cancer Genomic Medicine in Japan. Cancer Discov. 2022, 12, 2509–2515. [Google Scholar] [CrossRef] [PubMed]
- Mukai, Y.; Ueno, H. Establishment and Implementation of Cancer Genomic Medicine in Japan. Cancer Sci. 2021, 112, 970–977. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Pacífico, J.P.; Sammons, S.; Tolaney, S.M. Tumor Mutational Burden in Breast Cancer: Current Evidence, Challenges, and Opportunities. Cancers 2023, 15, 3997. [Google Scholar] [CrossRef]
- O’meara, T.A.; Tolaney, S.M. Tumor Mutational Burden as a Predictor of Immunotherapy Response in Breast Cancer. Oncotarget 2021, 12, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, G.P. Environmental Exposures and Mutational Patterns of Cancer Genomes. Genome Med. 2010, 2, 54. [Google Scholar] [CrossRef]
- Wang, X.; Ricciuti, B.; Nguyen, T.; Li, X.; Rabin, M.S.; Awad, M.M.; Lin, X.; Johnson, B.E.; Christiani, D.C. Association between Smoking History and Tumor Mutation Burden in Advanced Non⇓small Cell Lung Cancer. Cancer Res. 2021, 81, 2566–2573. [Google Scholar] [CrossRef]
- Mina, L.A.; Lim, S.; Bahadur, S.W.; Firoz, A.T. Immunotherapy for the Treatment of Breast Cancer: Emerging New Data. Breast Cancer Targets Ther. 2019, 11, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Peyraud, F.; Italiano, A. Combined Parp Inhibition and Immune Checkpoint Therapy in Solid Tumors. Cancers 2020, 12, 1502. [Google Scholar] [CrossRef]
- Ashworth, A. A Synthetic Lethal Therapeutic Approach: Poly(ADP) Ribose Polymerase Inhibitors for the Treatment of Cancers Deficient in DNA Double-Strand Break Repair. J. Clin. Oncol. 2008, 26, 3785–3790. [Google Scholar] [CrossRef]
- Stewart, R.A.; Pilié, P.G.; Yap, T.A. Development of PARP and Immune-Checkpoint Inhibitor Combinations. Cancer Res. 2018, 78, 6717–6725. [Google Scholar] [CrossRef]
- Kim, M.; Jeon, S.; Lee, H.J.; Ri, H.-S.; Cho, A.-R.; Park, E.J.; Yeo, J.S.; Kim, J.-H.; Lee, J. NKG2D (Natural Killer Group 2, Member D) Ligand Expression and Ameloblastoma Recurrence: A Retrospective Immunohistological Pilot Study. BMC Oral Health 2024, 24, 1102. [Google Scholar] [CrossRef] [PubMed]
- Pala, L.; De Pas, T.; Conforti, F. Boosting Anticancer Immunotherapy through Androgen Receptor Blockade. Cancer Cell 2022, 40, 455–457. [Google Scholar] [CrossRef] [PubMed]
- von Minckwitz, G.; Huang, C.-S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Puccini, A.; Battaglin, F.; Iaia, M.L.; Lenz, H.J.; Salem, M.E. Overcoming Resistance to Anti-PD1 and Anti-PD-L1 Treatment in Gastrointestinal Malignancies. J. Immunother. Cancer 2020, 8, e000404. [Google Scholar] [CrossRef] [PubMed]
TMB-Low (TMB < 10 mut/Mb) (n = 5720) | TMB-High (TMB ≥ 10 mut/Mb) (n = 683) | p-Value | |
---|---|---|---|
Age | <0.001 | ||
<65 (n = 4701) | 4243 (74.2%) | 458 (67.1%) | |
≥65 (n = 1702) | 1477 (25.8%) | 225 (32.9%) | |
Gender | n.s. | ||
Woman (n = 6364) | 5685 (99.4%) | 679 (99.4%) | |
Man (n = 39) | 35 (0.6%) | 4 (0.6%) | |
Smoking a | n.s. | ||
Smoking (n = 1256) | 1135 (21.2%) | 121 (19.0%) | |
No Smoking (n = 4745) | 4228 (78.8%) | 517 (81.0%) | |
Alcohol b | n.s. | ||
Heavy alcohol (n = 297) | 273 (5.4%) | 24 (4.0%) | |
No heavy alcohol (n = 5387) | 4813 (94.6%) | 574 (96.0%) | |
MSI c | <0.001 | ||
MSI-high (n = 23) | 2 (0.0%) | 21 (3.5%) | |
Non MSI-high (n = 5450) | 4872 (100.0%) | 578 (96.5%) | |
PD-L1 protein d | n.s. | ||
Positive (n = 230) | 205 (47.1%) | 25 (47.2%) | |
Negative (n = 258) | 230 (52.9%) | 28 (52.8%) |
Genes | TMB Status | p-Value | |
---|---|---|---|
TMB-Low (TMB < 10 mut/Mb) (n = 5612) | TMB-High (TMB ≥ 10 mut/Mb) (n = 681) | ||
TP53 (n = 3233) | 2832 (50.5%) | 401 (58.9%) | <0.001 |
PIK3CA (n = 2367) | 2017 (35.9%) | 350 (51.4%) | <0.001 |
GATA3 (n = 666) | 620 (11.0%) | 46 (6.8%) | <0.001 |
ESR1 (n = 616) | 520 (9.3%) | 96 (14.1%) | <0.001 |
PTEN (n = 515) | 451 (8.0%) | 64 (9.4%) | n.s. |
AKT1 (n = 513) | 446 (7.9%) | 67 (9.8%) | n.s. |
BRCA2 (n = 418) | 341 (6.1%) | 77 (11.3%) | <0.001 |
CDH1 (n = 400) | 307 (5.5%) | 93 (13.7%) | <0.001 |
RB1 (n = 364) | 284 (5.1%) | 80 (11.7%) | <0.001 |
ARID1A (n = 338) | 260 (4.6%) | 78 (11.5%) | <0.001 |
NF1 (n = 308) | 239 (4.3%) | 69 (10.1%) | <0.001 |
MAP3K1 (n = 285) | 236 (4.2%) | 49 (7.2%) | <0.001 |
STK11 (n = 249) | 217 (3.9%) | 32 (4.7%) | n.s. |
ERBB2 (n = 222) | 188 (3.3%) | 34 (5.0%) | 0.02 |
BRCA1 (n = 176) | 152 (2.7%) | 24 (3.5%) | n.s. |
MAP2K4 (n = 175) | 145 (2.6%) | 30 (4.4%) | <0.001 |
TERT (n = 147) | 139 (2.5%) | 8 (1.2%) | 0.03 |
MUTYH (n = 142) | 128 (2.3%) | 14 (2.1%) | n.s. |
SF3B1 (n = 139) | 132 (2.4%) | 7 (1.0%) | 0.02 |
TBX3 (n = 128) | 103 (1.8%) | 25 (3.7%) | 0.001 |
MSH6 (n = 112) | 88 (1.6%) | 24 (3.5%) | <0.001 |
MLH1 (n = 27) | 19 (0.3%) | 8 (1.2%) | <0.001 |
PMS2 (n = 22) | 17 (0.3%) | 5 (0.7%) | n.s. |
MSH2 (n = 14) | 6 (0.1%) | 8 (1.2%) | <0.001 |
10.0 mut/Mb < TMB (n = 175) | 10.0 mut/Mb < TMB < 18.5 mut/Mb (n = 119) | TMB ≥ 18.5 mut/Mb (n = 56) | p-Value | |
---|---|---|---|---|
CR (n = 1) | 1 (0.6%) | 0 (0%) | 1 (1.8%) | |
PR (n = 23) | 11 (6.3%) | 12 (10.1%) | 11 (19.6%) | |
SD (n = 30) | 12 (6.9%) | 18 (15.1%) | 12 (21.4%) | |
PD (n = 62) | 15 (8.6%) | 47 (39.5%) | 15 (26.8%) | |
NE (n = 59) | 17 (9.7%) | 42 (35.3%) | 17 (30.4%) | |
ORR; CR+PR (n = 24) | 24 (13.7%) | 12 (10.1%) | 12 (21.4%) | 0.041 |
DCR; CR+PR+SD (n = 54) | 54 (30.9%) | 30 (25.2%) | 24 (42.9%) | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishikubo, H.; Kawabata, K.; Ma, D.; Sano, T.; Imanishi, D.; Sakuma, T.; Maruo, K.; Fan, C.; Yamamoto, Y.; Yashiro, M. Optimal Cutoff Value of the Tumor Mutation Burden for Immune Checkpoint Inhibitors: A Lesson from 175 Pembrolizumab-Treated Cases Among 6403 Breast Cancer Patients. Appl. Sci. 2025, 15, 10173. https://doi.org/10.3390/app151810173
Nishikubo H, Kawabata K, Ma D, Sano T, Imanishi D, Sakuma T, Maruo K, Fan C, Yamamoto Y, Yashiro M. Optimal Cutoff Value of the Tumor Mutation Burden for Immune Checkpoint Inhibitors: A Lesson from 175 Pembrolizumab-Treated Cases Among 6403 Breast Cancer Patients. Applied Sciences. 2025; 15(18):10173. https://doi.org/10.3390/app151810173
Chicago/Turabian StyleNishikubo, Hinano, Kyoka Kawabata, Dongheng Ma, Tomoya Sano, Daiki Imanishi, Takashi Sakuma, Koji Maruo, Canfeng Fan, Yurie Yamamoto, and Masakazu Yashiro. 2025. "Optimal Cutoff Value of the Tumor Mutation Burden for Immune Checkpoint Inhibitors: A Lesson from 175 Pembrolizumab-Treated Cases Among 6403 Breast Cancer Patients" Applied Sciences 15, no. 18: 10173. https://doi.org/10.3390/app151810173
APA StyleNishikubo, H., Kawabata, K., Ma, D., Sano, T., Imanishi, D., Sakuma, T., Maruo, K., Fan, C., Yamamoto, Y., & Yashiro, M. (2025). Optimal Cutoff Value of the Tumor Mutation Burden for Immune Checkpoint Inhibitors: A Lesson from 175 Pembrolizumab-Treated Cases Among 6403 Breast Cancer Patients. Applied Sciences, 15(18), 10173. https://doi.org/10.3390/app151810173