Development of a Dispersion Model for Liquid and Gaseous Chemical Agents: Application to Four Types of Street Canyons
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Numerical Validation
2.3. Computational Configurations and Numerical Setup
3. Results
3.1. Characteristics of the Mean Wind Flow in Canyon Types
3.2. Dispersion Characteristics of Chemical Agents
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Nomenclature
normalized concentrations | |
concentration of the gas-phase chemical agent | |
concentration of the liquid-phase chemical agent | |
CB | Cube canyon with L = H |
CFD | Computational fluid dynamics |
condensation rate of the gas-phase chemical agent | |
evaporation rate of the liquid-phase chemical agent | |
Δ | distance from the wall surface |
FAC2 | Factor of two of observations |
FB | Fractional bias |
H | building height |
maximum building height in the domain | |
HD | sulfur mustard |
L | canyon length |
LN | Long canyon with L = 11H |
MD | Medium canyon with L = 5H |
MG | Geometric mean bias |
NMSE | Normalized mean square error |
R | Correlation coefficient |
partitioning coefficients for the gas phases | |
partitioning coefficients for the liquid phases | |
RANS | Reynolds average Navier–Stokes equation |
RMSE | Root mean square error |
Source or Sink terms for | |
Source or Sink terms for | |
SH | Short canyon with L = 3H |
TKE | Turbulence kinetic energy |
dry deposition velocity | |
VG | Geometric variance |
References
- Bugliarello, G. Urban security in perspective. Technol. Soc. 2003, 25, 499–507. [Google Scholar] [CrossRef]
- Mirza, M.N.E.E.; Rana, I.A. A systematic review of urban terrorism literature: Root causes, thematic trends, and future directions. J. Saf. Sci. Resil. 2024, 5, 249–265. [Google Scholar] [CrossRef]
- Szinicz, L. History of chemical and biological warfare agents. Toxicology 2005, 214, 167–181. [Google Scholar] [CrossRef]
- Bismuth, C.; Borron, S.W.; Baud, F.J.; Barriot, P. Chemical weapons: Documented use and compounds on the horizon. Toxicol. Lett. 2004, 149, 11–18. [Google Scholar] [CrossRef]
- Tokuda, Y.; Kikuchi, M.; Takahashi, O.; Stein, G.H. Prehospital management of sarin nerve gas terrorism in urban settings: 10 years of progress after the Tokyo subway sarin attack. Resuscitation 2006, 68, 193–202. [Google Scholar] [CrossRef]
- Price, B.; Price, R. Terrorism and warfare (chemical, biological, and radioactive and nuclear). In Information Resources in Toxicology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 485–496. [Google Scholar]
- Vale, A.; Marrs, T.C.; Rice, P. Chemical terrorism and nerve agents. Medicine 2016, 44, 106–108. [Google Scholar] [CrossRef]
- Kukkonen, J.; Riikonen, K.; Nikmo, J.; Jäppinen, A.; Nieminen, K. Modelling aerosol processes related to the atmospheric dispersion of sarin. J. Hazard. Mater. 2001, 85, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Becherini, F.; Pastorelli, G.; Valotto, G.; Gambirasi, A.; Bianchin, S.; Favaro, M. Effects of protective treatments on particle deposition and colour variation in stone surfaces exposed to an urban environment. Prog. Org. Coat. 2017, 112, 75–85. [Google Scholar] [CrossRef]
- Armand, P.; Oldrini, O.; Duchenne, C.; Perdriel, S. Topical 3D modelling and simulation of air dispersion hazards as a new paradigm to support emergency preparedness and response. Environ. Model. Softw. 2021, 143, 105129. [Google Scholar] [CrossRef]
- Swiatek, J.A.; Kaul, D.C. Crisis Prediction Disaster Management; Citeseer: McLean, VA, USA, 1999. [Google Scholar]
- Ku, H.; Seo, J.; Nam, H. A study on transport and dispersion of chemical agent according to Lagrangian puff and particle models in NBC_RAMS. J. Korea Inst. Mil. Sci. Technol. 2023, 26, 102–112. [Google Scholar] [CrossRef]
- Antonioni, G.; Burkhart, S.; Burman, J.; Dejoan, A.; Fusco, A.; Gaasbeek, R.; Gjesdal, T.; Jäppinen, A.; Riikonen, K.; Morra, P. Comparison of CFD and operational dispersion models in an urban-like environment. Atmos. Environ. 2012, 47, 365–372. [Google Scholar]
- Fu, X.; Xiang, S.; Liu, Y.; Liu, J.; Yu, J.; Mauzerall, D.L.; Tao, S. High-resolution simulation of local traffic-related NOx dispersion and distribution in a complex urban terrain. Environ. Pollut. 2020, 263, 114390. [Google Scholar] [CrossRef]
- Mazzoldi, A.; Hill, T.; Colls, J.J. CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities. Atmos. Environ. 2008, 42, 8046–8054. [Google Scholar] [CrossRef]
- Ioannidis, G.; Li, C.; Tremper, P.; Riedel, T.; Ntziachristos, L. Application of CFD modelling for pollutant dispersion at an urban traffic hotspot. Atmosphere 2024, 15, 113. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS. J. Wind. Eng. Ind. Aerodyn. 2011, 99, 340–348. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, J. CFD simulations of wind flow and pollutant dispersion in a street canyon with traffic flow: Comparison between RANS and LES. Sustain. Cities Soc. 2021, 75, 103307. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Shi, Y.; Marvin, S.; Zheng, Y.; Xia, G. Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Yuan, C.; Ng, E.; Norford, L.K. Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build. Environ. 2014, 71, 245–258. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; Li, B.; Peng, Z.-R.; Fu, Q. Investigating the relationship between air pollution variation and urban form. Build. Environ. 2019, 147, 559–568. [Google Scholar] [CrossRef]
- Li, J.; You, W.; Peng, Y.; Ding, W. Exploring the potential of the aspect ratio to predict flow patterns in actual urban spaces for ventilation design by comparing the idealized and actual canyons. Sustain. Cities Soc. 2024, 102, 105214. [Google Scholar] [CrossRef]
- Kim, J.-J.; Baik, J.-J. Urban street-canyon flows with bottom heating. Atmos. Environ. 2001, 35, 3395–3404. [Google Scholar] [CrossRef]
- Jeong, S.J.; Andrews, M.J. Application of the k–ε turbulence model to the high Reynolds number skimming flow field of an urban street canyon. Atmos. Environ. 2002, 36, 1137–1145. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, C.-H.; Leung, D.Y.; Lam, K.M. Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ. 2006, 40, 5640–5658. [Google Scholar] [CrossRef]
- Zhong, J.; Cai, X.-M.; Bloss, W.J. Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review. Environ. Pollut. 2016, 214, 690–704. [Google Scholar] [CrossRef] [PubMed]
- Muniz-Gäal, L.P.; Pezzuto, C.C.; de Carvalho, M.F.H.; Mota, L.T.M. Urban geometry and the microclimate of street canyons in tropical climate. Build. Environ. 2020, 169, 106547. [Google Scholar] [CrossRef]
- Jung, H.; Kah, D.; Lim, K.C.; Lee, J.Y. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission. Environ. Pollut. 2017, 220, 478–486. [Google Scholar] [CrossRef]
- Czub, M.; Nawała, J.; Popiel, S.; Dziedzic, D.; Brzeziński, T.; Maszczyk, P.; Sanderson, H.; Fabisiak, J.; Bełdowski, J.; Kotwicki, L. Acute aquatic toxicity of sulfur mustard and its degradation products to Daphnia magna. Mar. Environ. Res. 2020, 161, 105077. [Google Scholar] [CrossRef]
- Jung, H.; Choi, S. Behavior of sulfur mustard in sand, concrete, and asphalt matrices: Evaporation, degradation, and decontamination. J. Environ. Sci. Health Part A 2017, 52, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Timperley, C.M.; Forman, J.E.; Abdollahi, M.; Al-Amri, A.S.; Baulig, A.; Benachour, D.; Borrett, V.; Cariño, F.A.; Curty, C.; Geist, M. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 3. On medical care and treatment of injuries from sulfur mustard. Toxicology 2021, 463, 152967. [Google Scholar] [CrossRef]
- Kim, J.-J.; Baik, J.-J. Effects of street-bottom and building-roof heating on flow in three-dimensional street canyons. Adv. Atmos. Sci. 2010, 27, 513–527. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.; Speziale, C. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A Fluid Dyn. 1992, 4, 1510–1520. [Google Scholar] [CrossRef]
- Chaudhary, M.; Singh, M.K. Study of multispecies convection-dispersion transport equation with variable parameters. J. Hydrol. 2020, 591, 125562. [Google Scholar] [CrossRef]
- Kwak, K.-H.; Baik, J.-J. Diurnal variation of NOx and ozone exchange between a street canyon and the overlying air. Atmos. Environ. 2014, 86, 120–128. [Google Scholar] [CrossRef]
- Pugh, T.A.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef]
- Montoya, M.I.; Planas, E.; Casal, J. A comparative analysis of mathematical models for relating indoor and outdoor toxic gas concentrations in accidental releases. J. Loss Prev. Process Ind. 2009, 22, 381–391. [Google Scholar] [CrossRef]
- Gromke, C.; Buccolieri, R.; Di Sabatino, S.; Ruck, B. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations–evaluation of CFD data with experimental data. Atmos. Environ. 2008, 42, 8640–8650. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Franke, J.; Hellsten, A.; Schlunzen, K.H.; Carissimo, B. The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: A summary. Int. J. Environ. Pollut. 2011, 44, 419–427. [Google Scholar] [CrossRef]
- Hanna, S.R.; Hansen, O.R.; Ichard, M.; Strimaitis, D. CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas. Atmos. Environ. 2009, 43, 262–270. [Google Scholar] [CrossRef]
- Giardina, M.; Buffa, P. A new approach for modeling dry deposition velocity of particles. Atmos. Environ. 2018, 180, 11–22. [Google Scholar] [CrossRef]
- Versteeg, H.K. An Introduction to Computational Fluid Dynamics the Finite Volume Method, 2nd ed.; Pearson Education India: Harlow, UK, 2007. [Google Scholar]
- Mun, D.S.; Kang, G.; Yang, M.; Kim, J.J. How trees’ drag and cooling effects influence airflow and temperature distributions around a street canyon. Build. Environ. 2024, 264, 111913. [Google Scholar] [CrossRef]
Evaluation Metrics (Best Agreement) | Wall A | Wall B | Acceptable Criteria [39] |
---|---|---|---|
0.19 | −0.11 | ||
1.28 | 0.91 | ||
0.08 | 0.06 | ||
1.18 | 1.05 | ||
0.92 | 0.97 | ||
0.91 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Han, S.C.; Choi, S.-D.; Jung, H.; Seo, J.; Jung, H.; Kim, J.-J. Development of a Dispersion Model for Liquid and Gaseous Chemical Agents: Application to Four Types of Street Canyons. Appl. Sci. 2025, 15, 10106. https://doi.org/10.3390/app151810106
Kim D-H, Han SC, Choi S-D, Jung H, Seo J, Jung H, Kim J-J. Development of a Dispersion Model for Liquid and Gaseous Chemical Agents: Application to Four Types of Street Canyons. Applied Sciences. 2025; 15(18):10106. https://doi.org/10.3390/app151810106
Chicago/Turabian StyleKim, Dong-Hyeon, Sang Cheol Han, Sung-Deuk Choi, Hyunsook Jung, Jiyun Seo, Heesoo Jung, and Jae-Jin Kim. 2025. "Development of a Dispersion Model for Liquid and Gaseous Chemical Agents: Application to Four Types of Street Canyons" Applied Sciences 15, no. 18: 10106. https://doi.org/10.3390/app151810106
APA StyleKim, D.-H., Han, S. C., Choi, S.-D., Jung, H., Seo, J., Jung, H., & Kim, J.-J. (2025). Development of a Dispersion Model for Liquid and Gaseous Chemical Agents: Application to Four Types of Street Canyons. Applied Sciences, 15(18), 10106. https://doi.org/10.3390/app151810106