Evolution Mechanism of Permeability Characteristics of Shale Reservoirs During Supercritical Fluid Fracturing and Displacement
Abstract
1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Experimental Method
2.2.1. Fracturing Experiment
2.2.2. Displacement Experiment
3. Results and Discussion
3.1. Permeability Characteristics of Shale Before and After Fracturing
3.1.1. Pressure Curve Analysis in Fracturing Process
3.1.2. Analysis of Permeability Characteristics
3.2. Breakthrough Curves of CO2 Displacement of CH4
3.3. Flow Curve of CO2 Displacing CH4
3.4. Parameters of CO2 Displacement of CH4
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yi, J.; Qi, Z.; Li, X.; Liu, H.; Zhou, W. Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China. Appl. Energy 2024, 357, 122483. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, J.; Xian, X.; Dong, Z.; Kuang, N.; Peng, Y.; Jiang, H. Feasibility of the CO2-ESGR technique for providing carbon-negative shale gas: A life cycle assessment. J. Clean. Prod. 2024, 484, 144353. [Google Scholar] [CrossRef]
- Chang, X.; Lin, S.; Yang, C.; Wang, K.; Liu, S.; Guo, Y. A critical review of ScCO2-enhanced gas recovery and geologic storage in shale reservoirs. Gas Sci. Eng. 2024, 123, 205317. [Google Scholar] [CrossRef]
- Tang, C.; Zhou, W.; Chen, Z.; Wei, J. Numerical simulation of CO2 sequestration in shale gas reservoirs at reservoir scale coupled with enhanced gas recovery. Energy 2023, 277, 127657. [Google Scholar] [CrossRef]
- Kasala, E.; Wang, J.; Majid, A.; Nadege, M. Enhancing CO2 storage capacity and methane (CH4) production in the Yanchang shale gas reservoir: A simulation study on influencing factors and optimization strategies. Fuel 2025, 388, 134535. [Google Scholar] [CrossRef]
- Yang, K.; Zhou, J.; Xian, X.; Zhou, L.; Zhang, C.; Lu, Z.; Yin, H. Changes of wettability of shale exposed to supercritical CO2-water and its alteration mechanism: Implication for CO2 geo-sequestration. Fuel 2024, 357, 129942. [Google Scholar] [CrossRef]
- Hu, N.; Xian, X.; Zhou, L.; Tang, J.; Kang, Y.; Wang, H. Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: Results, status and future challenges. Adv. Geo-Energy Res. 2019, 3, 207–224. [Google Scholar] [CrossRef]
- Memon, S.; Feng, R.; Ali, M.; Bhatti, M.A.; Giwelli, A.; Keshavarz, A.; Sarmadivaleh, M. Supercritical CO2-Shale interaction induced natural fracture closure: Implications for ScCO2 hydraulic fracturing in shales. Fuel 2022, 313, 122682. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, W.; Xu, Z.; Liu, S.; Wei, C. A review of experimental apparatus for supercritical CO2 fracturing of shale. J. Petrol. Sci. Eng. 2022, 208, 109515. [Google Scholar] [CrossRef]
- Gupta, N.; Verma, A. Supercritical carbon dioxide utilization for hydraulic fracturing of shale reservoir, and geo-storage: A review. Energy Fuels 2023, 37, 14604–14621. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Tang, J.; Zhou, Z.; Liao, Y. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 2017, 190, 370–378. [Google Scholar] [CrossRef]
- Shen, W.; Ma, T.; Zuo, L.; Yang, X.; Cai, J. Advances and prospects of supercritical CO2 for shale gas extraction and geological sequestration in gas shale reservoirs. Energy Fuels 2024, 38, 789–805. [Google Scholar] [CrossRef]
- Verdon, J.P.; Kendall, J.M.; Maxwell, S.C. A comparison of passive seismic monitoring of fracture stimulation from water and CO2 injection. Geophysics 2010, 75, MA1–MA7. [Google Scholar] [CrossRef]
- Lyu, Q.; Tan, J.; Li, L.; Ju, Y.; Busch, A.; Wood, D.A.; Hu, R. The role of supercritical carbon dioxide for recovery of shale gas and sequestration in gas shale reservoirs. Energy Environ. Sci. 2021, 14, 4203–4227. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, Y.; Elsworth, D.; Fang, Y.; Tang, J. Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. J. Petrol. Sci. Eng. 2018, 165, 284–297. [Google Scholar] [CrossRef]
- Hazra, B.; Vishal, V.; Sethi, C.; Chandra, D. Impact of supercritical CO2 on shale reservoirs and its implication for CO2 sequestration. Energy Fuels 2022, 36, 9882–9903. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Li, X.; Lin, C. Experimental study on the supercritical CO2 fracturing of shale considering anisotropic effects. J. Petrol. Sci. Eng. 2019, 173, 932–940. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, G.; Wang, Y. Experimental investigation on fracture propagation modes in supercritical carbon dioxide fracturing using acoustic emission monitoring. Int. J. Rock. Mech. Min. 2018, 110, 111–119. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, X.; He, J. A laboratory investigation of fracture propagation induced by supercritical carbon dioxide fracturing in continental shale with interbeds. J. Petrol. Sci. Eng. 2018, 166, 739–746. [Google Scholar] [CrossRef]
- Wang, M.; Huang, K.; Xie, W.; Dai, X. Current research into the use of supercritical CO2 technology in shale gas exploitation. Int. J. Min. Sci. Technol. 2019, 29, 739–744. [Google Scholar] [CrossRef]
- Xie, W.; Chen, S.; Wang, M.; Yu, Z.; Wang, H. Progress and prospects of supercritical CO2 application in the exploitation of shale gas reservoirs. Energy Fuels 2021, 35, 18370–18384. [Google Scholar] [CrossRef]
- Liu, B.; Wang, C.; Zhang, J.; Xiao, S.; Zhang, Z.; Shen, Y.; He, J. Displacement mechanism of oil in shale inorganic nanopores by supercritical carbon dioxide from molecular dynamics simulations. Energy Fuels 2017, 31, 738–746. [Google Scholar] [CrossRef]
- Du, X.; Gu, M.; Duan, S.; Xian, X. The influences of CO2 injection pressure on CO2 dispersion and the mechanism of CO2–CH4 displacement in shale. J. Energy Res. Tech. 2018, 140, 012907. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, G.; Chen, K.; Zhang, Y.; Jiang, L.; Song, Y. Molecular dynamic simulation on the dynamic process of CH4 displacement by CO2 in shale pores. Energy Fuels 2024, 38, 7057–7067. [Google Scholar] [CrossRef]
- Du, X.D.; Gu, M.; Duan, S.; Xian, X.F. Investigation of CO2–CH4 displacement and transport in shale for enhanced shale gas recovery and CO2 sequestration. J. Energy Res. Tech. 2017, 139, 012909. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Z.; Wang, X.; Zhang, Y.; Qin, Y.; Chen, C.; Zhou, W. Displacement characteristics of CO2 to CH4 in heterogeneous surface slit pores. Energy Fuels 2023, 37, 2926–2944. [Google Scholar] [CrossRef]
- Du, X.; Gu, M.; Liu, Z.; Zhao, Y.; Sun, F.; Wu, T. Enhanced shale gas recovery by the injections of CO2, N2, and CO2/N2 mixture gases. Energy Fuels 2019, 33, 5091–5101. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Y.; Liu, D. Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale. Int. J. Coal Geol. 2017, 179, 211–218. [Google Scholar] [CrossRef]
- Iddphonce, R.; Wang, J. Investigation of CO2 and CH4 competitive adsorption during enhanced shale gas production. J. Petrol. Sci. Eng. 2021, 205, 108802. [Google Scholar] [CrossRef]
- Ou, C.; Li, C.; Rui, Z.; Ma, Q. Lithofacies distribution and gas-controlling characteristics of the Wufeng-Longmaxi black shales in the southeastern region of the Sichuan Basin, China. J. Pet. Sci. Eng. 2018, 165, 269–283. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Jiang, Y.; Xian, X.; Liu, Q.; Zhang, D.; Tan, J. Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: An experimental study. Nat. Gas. Sci. Eng. 2016, 36, 369–377. [Google Scholar] [CrossRef]
Condition | CH4 Injection (L) | CH4 Production (L) | CH4 Production Rate (%) | CO2 Injection (L) | CO2 Storage (L) | CO2 Storage Rate (%) | |
---|---|---|---|---|---|---|---|
Injection pressure | 0 MPa | 6.47 | 3.09 | 47.75 | - | - | - |
6 MPa | 6.16 | 4.56 | 73.96 | 6.75 | 2.20 | 32.66 | |
9 MPa | 5.99 | 4.22 | 70.45 | 13.12 | 3.95 | 30.11 | |
Stress | 10 MPa | 6.13 | 4.63 | 75.51 | 15.90 | 4.01 | 25.17 |
15 MPa | 5.99 | 4.22 | 70.45 | 13.12 | 3.95 | 30.11 | |
20 MPa | 5.69 | 3.58 | 62.83 | 11.62 | 3.76 | 32.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yang, K.; Chen, Q.; Yin, H.; Liang, Y. Evolution Mechanism of Permeability Characteristics of Shale Reservoirs During Supercritical Fluid Fracturing and Displacement. Appl. Sci. 2025, 15, 10043. https://doi.org/10.3390/app151810043
Sun Y, Yang K, Chen Q, Yin H, Liang Y. Evolution Mechanism of Permeability Characteristics of Shale Reservoirs During Supercritical Fluid Fracturing and Displacement. Applied Sciences. 2025; 15(18):10043. https://doi.org/10.3390/app151810043
Chicago/Turabian StyleSun, Yaobai, Kang Yang, Qiao Chen, Hong Yin, and Yongchang Liang. 2025. "Evolution Mechanism of Permeability Characteristics of Shale Reservoirs During Supercritical Fluid Fracturing and Displacement" Applied Sciences 15, no. 18: 10043. https://doi.org/10.3390/app151810043
APA StyleSun, Y., Yang, K., Chen, Q., Yin, H., & Liang, Y. (2025). Evolution Mechanism of Permeability Characteristics of Shale Reservoirs During Supercritical Fluid Fracturing and Displacement. Applied Sciences, 15(18), 10043. https://doi.org/10.3390/app151810043