Early Post-PCI Inflammatory Risk Score for Diastolic Dysfunction: Development and Internal Validation (TRIPOD-Compliant)
Abstract
Featured Application
Abstract
1. Introduction
- Evaluate the relationship between post-procedural inflammatory biomarkers and the degree of early diastolic dysfunction;
- Assess the additive role of metabolic comorbidities; and
- Develop a preliminary algorithm for estimating the risk of early post-PCI diastolic impairment.
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Definition of Variables
2.4. Risk Score Presentation
- CRP > 10 mg/L → +1 point
- NT-proBNP > 125 pg/mL → +1 point
- Age ≥ 65 years → +1 point
- Low risk: 0–1 points (sensitivity: 84%, specificity: 42%)
- Intermediate risk: 2 points (sensitivity: 62%, specificity: 71%)
- High risk: 3 points (sensitivity: 38%, specificity: 89%)
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Inflammatory Markers and Diastolic Dysfunction
3.3. Ordinal Regression Analysis
3.4. Exploratory Linear Regression
3.5. Preliminary Risk Estimation Algorithm
- CRP > 10 mg/L → +1 point
- NT-proBNP > 125 pg/mL → +1 point
- Age ≥ 65 years → +1 point
3.6. Clinical Utility
3.7. Stratified Subgroup Analyses
4. Discussion
4.1. Comparison with Previous Literature
4.2. Clinical Implications
4.3. Strengths and Limitations
4.4. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergmark, B.A.; Mathenge, N.; Merlini, P.A.; Lawrence-Wright, M.B.; Giugliano, R.P. Acute coronary syndromes. Lancet 2022, 399, 1347–1358. [Google Scholar] [CrossRef]
- Parikh, P.B.; Bhatt, D.L.; Bhasin, V.; Anker, S.D.; Skopicki, H.A.; Claessen, B.E.; Fonarow, G.C.; Hernandez, A.F.; Mehran, R.; Petrie, M.C.; et al. Impact of Percutaneous Coronary Intervention on Outcomes in Patients with Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 2432–2447. [Google Scholar] [CrossRef]
- Obokata, M.; Reddy, Y.N.V.; Borlaug, B.A. Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc. Imaging 2020, 13, 245–257. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef]
- Pugliese, N.R.; Pellicori, P.; Filidei, F.; De Biase, N.; Maffia, P.; Guzik, T.J.; Masi, S.; Taddei, S.; Cleland, J.G.F. Inflammatory pathways in heart failure with preserved left ventricular ejection fraction: Implications for future interventions. Cardiovasc. Res. 2023, 118, 3536–3555. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 2014, 11, 255–265. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Song, C.; Zhang, R.; Yuan, S.; Li, J.; Dou, K. Discordance Between Neutrophil to Lymphocyte Ratio and High Sensitivity C-Reactive Protein to Predict Clinical Events in Patients with Stable Coronary Artery Disease: A Large-Scale Cohort Study. J. Inflamm. Res. 2023, 16, 5439–5450. [Google Scholar] [CrossRef] [PubMed]
- Tarcau, B.M.; Negru, A.; Ghitea, T.C.; Marian, E. Is There a Connection between Hyperhomocysteinemia and the Cardiometabolic Syndrome? Biomedicines 2024, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Mouton, A.J.; Li, X.; Hall, M.E.; Hall, J.E. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ. Res. 2020, 126, 789–806. [Google Scholar] [CrossRef]
- Maris, L.; Ghitea, T.C. Can Cardiometabolic Risk Be Reduced in the Elderly? Comprehensive Epidemiological Study. Geriatrics 2023, 8, 73. [Google Scholar] [CrossRef]
- Mocan, M.; Mocan Hognogi, L.D.; Anton, F.P.; Chiorescu, R.M.; Goidescu, C.M.; Stoia, M.A.; Farcas, A.D. Biomarkers of Inflammation in Left Ventricular Diastolic Dysfunction. Dis. Markers 2019, 2019, 7583690. [Google Scholar] [CrossRef]
- Recio-Mayoral, A.; Banerjee, D.; Streather, C.; Kaski, J.C. Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease--a cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis 2011, 216, 446–451. [Google Scholar] [CrossRef]
- Andre, T.; Jean-Pierre, D. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Branco, B.H.M.; Carvalho, I.Z.; de Oliveira, H.G.; Fanhani, A.P.; Dos Santos, M.C.M.; de Oliveira, L.P.; Boni, S.M.; Nardo, N. Effects of 2 Types of Resistance Training Models on Obese Adolescents’ Body Composition, Cardiometabolic Risk, and Physical Fitness. J. Strength Cond. Res. 2018, 34, 2672–2682. [Google Scholar] [CrossRef]
- Aronne, L.J.; Isoldi, K.K. Overweight and obesity: Key components of cardiometabolic risk. Clin. Cornerstone 2007, 8, 29–37. [Google Scholar] [CrossRef]
- Christian, R.K.; Andrea, H.L.; James, B.R. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar] [CrossRef]
- Potra Cicalău, G.I.; Marcu, O.A.; Ghitea, T.C.; Ciavoi, G.; Iurcov, R.C.; Beiusanu, C.; Trifan, D.F.; Vicaș, L.G.; Ganea, M. Study of Periodontal Bacteria in Diabetic Wistar Rats: Assessing the Anti-Inflammatory Effects of Carvacrol and Magnolol Hydrogels. Biomedicines 2024, 12, 1445. [Google Scholar] [CrossRef]
- Zhazykbayeva, S.; Pabel, S.; Mügge, A.; Sossalla, S.; Hamdani, N. The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophys. Rev. 2020, 12, 947–968. [Google Scholar] [CrossRef]
- Tuleta, I.; Frangogiannis, N.G. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv. Drug Deliv. Rev. 2021, 176, 113904. [Google Scholar] [CrossRef]
- Danciu, A.M.; Ghitea, T.C.; Bungau, A.F.; Vesa, C.M. The Relationship Between Oxidative Stress, Selenium, and Cumulative Risk in Metabolic Syndrome. In Vivo 2023, 37, 2877–2887. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A Novel Paradigm for Heart Failure With Preserved Ejection Fraction: Comorbidities Drive Myocardial Dysfunction and Remodeling Through Coronary Microvascular Endothelial Inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Ali, M.M.; Parveen, S.; Williams, V.; Dons, R.; Uwaifo, G.I. Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD). J. Clin. Transl. Endocrinol. 2024, 36, 100341. [Google Scholar] [CrossRef]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef]
- Tao, S.; Yu, L.; Li, J.; Huang, L.; Xue, T.; Yang, D.; Huang, X.; Meng, C. Multiple triglyceride-derived metabolic indices and incident cardiovascular outcomes in patients with type 2 diabetes and coronary heart disease. Cardiovasc. Diabetol. 2024, 23, 359. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhong, Q.; Zhao, L.; An, Z.; Li, S. Combined effect of triglyceride-glucose index and atherogenic index of plasma on cardiovascular disease: A national cohort study. Sci. Rep. 2024, 14, 31092. [Google Scholar] [CrossRef]
- Ma, X.; Chu, H.; Sun, Y.; Cheng, Y.; Zhang, D.; Zhou, Y.; Liu, X.; Wang, Z. The effect of hsCRP on TyG index-associated cardiovascular risk in patients with acute coronary syndrome undergoing PCI. Sci. Rep. 2024, 14, 18083. [Google Scholar] [CrossRef]
- Fu, S.; Chen, Z.; Wu, H. Association between CRP-Albumin-Lymphocyte (CALLY) index and Asthma-COPD overlap: Analysis of NHANES 2015–2018 data. BMC Pulm. Med. 2025, 25, 257. [Google Scholar] [CrossRef]
- Sibianu, M.; Slevin, M. The Pathogenic Role of C-Reactive Protein in Diabetes-Linked Unstable Atherosclerosis. Int. J. Mol. Sci. 2025, 26, 6855. [Google Scholar] [CrossRef]
- Xie, R.C.; Wang, Y.T.; Lin, X.F.; Lin, X.M.; Hong, X.Y.; Zheng, H.J.; Zhang, L.F.; Huang, T.; Ma, J.F. Development and validation of a clinical prediction model for early ventilator weaning in post-cardiac surgery. Heliyon 2024, 10, e28141. [Google Scholar] [CrossRef]
- Vickers, A.J.; Holland, F. Decision curve analysis to evaluate the clinical benefit of prediction models. Spine J. 2021, 21, 1643–1648. [Google Scholar] [CrossRef]
Parameter | Cutoff | Points |
---|---|---|
C-reactive protein (CRP) | >10 mg/L | +1 |
NT-proBNP | >125 pg/mL | +1 |
Age | ≥65 years | +1 |
Variable | Count (n) | % | Student’s t | |
---|---|---|---|---|
Gender | Male | 119 | 65.7% | 37.955 ** |
Female | 62 | 34.3% | ||
Residence | Urban | 95 | 52.5% | 74.958 ** |
Rural | 86 | 47.5% | ||
Age (years) | 63 ± 11 | 39.631 ** | ||
Initial leukocytes (×109/L) (mean ± SD) | 12.31 ± 4.15 | 39.918 ** | ||
Initial neutrophils (×109/L) (mean ± SD) | 9.10 ± 3.79 | 32.302 ** | ||
Initial lymphocytes (×109/L) (mean ± SD) | 3.63 ± 5.00 | 9.756 ** | ||
Initial hs-cTn (ng/L) (mean ± SD) | 3223 ± 8644 | 5.016 ** | ||
Hypertension, n (%) | 102 | 56.4% | 2.923 | |
Dyslipidemia, n (%) | 146 | 80.7% | 68.072 ** | |
Type 2 diabetes, n (%) | 56 | 30.9% | 26.304 ** | |
Obesity, n (%) | 87 | 48.1% | 0.271 | |
Killip class at admission, n (%) | Class I: | 120 | 66.3% | 268.365 ** |
Class II: | 41 | 22.7% | ||
Class III: | 11 | 6.1% | ||
Class IV: | 8 | 4.4% | ||
TIMI flow post-PCI, n (%) | 0: | 8 | 4.4% | 336.414 ** |
1: | 7 | 3.9% | ||
2: | 14 | 7.7% | ||
3: | 152 | 84.0% | ||
Diastolic dysfunction grade, n (%) | Grade 0: | 6 | 3.3% | 90.050 ** |
Grade I: | 72 | 39.8% | ||
Grade II: | 81 | 44.8% | ||
Grade III: | 22 | 12.2% |
CRP Tertile | Grade 0–1 n (%) | Grade 2 n (%) | Grade 3 n (%) |
---|---|---|---|
T1: ≤6.406 mg/L | 45 (74.0) | 12 (19.7) | 4 (6.3) |
T2: 6.406–38.056 mg/L | 38 (62.3) | 17 (27.9) | 6 (9.8) |
T3: ≥38.056 mg/L | 29 (47.5) | 21 (34.4) | 11 (18.0) |
Total | 112 (61.9) | 50 (27.6) | 21 (11.6) |
Predictor | β | SE | OR | 95% CI for OR | p-Value |
---|---|---|---|---|---|
CRP (mg/L) | 0.004 | 0.002 | 1.004 | 0.999–1.009 | 0.081 |
Hypertension | 0.440 | 0.311 | 1.55 | 0.84–2.86 | 0.156 |
Type 2 Diabetes Mellitus | 0.020 | 0.345 | 1.02 | 0.52–1.98 | 0.954 |
Dyslipidemia | −0.050 | 0.338 | 0.95 | 0.49–1.83 | 0.885 |
Obesity | 0.070 | 0.311 | 1.07 | 0.58–1.96 | 0.823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzle, A.M.; Matache, P.; Moisi, M.I.; Ghitea, M.C.; Ghitea, E.C.; Gîtea, M.F.; Ghitea, T.C.; Popescu, M.I. Early Post-PCI Inflammatory Risk Score for Diastolic Dysfunction: Development and Internal Validation (TRIPOD-Compliant). Appl. Sci. 2025, 15, 10018. https://doi.org/10.3390/app151810018
Buzle AM, Matache P, Moisi MI, Ghitea MC, Ghitea EC, Gîtea MF, Ghitea TC, Popescu MI. Early Post-PCI Inflammatory Risk Score for Diastolic Dysfunction: Development and Internal Validation (TRIPOD-Compliant). Applied Sciences. 2025; 15(18):10018. https://doi.org/10.3390/app151810018
Chicago/Turabian StyleBuzle, Alexandra Manuela, Priscilla Matache, Mădălina Ioana Moisi, Marc Cristian Ghitea, Evelin Claudia Ghitea, Maria Flavia Gîtea, Timea Claudia Ghitea, and Mircea Ioachim Popescu. 2025. "Early Post-PCI Inflammatory Risk Score for Diastolic Dysfunction: Development and Internal Validation (TRIPOD-Compliant)" Applied Sciences 15, no. 18: 10018. https://doi.org/10.3390/app151810018
APA StyleBuzle, A. M., Matache, P., Moisi, M. I., Ghitea, M. C., Ghitea, E. C., Gîtea, M. F., Ghitea, T. C., & Popescu, M. I. (2025). Early Post-PCI Inflammatory Risk Score for Diastolic Dysfunction: Development and Internal Validation (TRIPOD-Compliant). Applied Sciences, 15(18), 10018. https://doi.org/10.3390/app151810018