Machine Learning Approaches for FDM-Based 3D Printing: A Literature Review
Abstract
1. Introduction
2. Methodology
2.1. Search Strategy
2.2. Database Selection
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection Process
3. Literature Review and Analysis of Existing Studies
3.1. Frequently Optimized Parameters in 3D Printing
3.2. Machine Learning Algorithms Used for Parameter Optimization
- Classification models, which predict class membership (for example, labeling a part as “defect” or “non-defect”).
- Regression models, which predict a numerical value (for example, predicting a material’s tensile strength in MPa).
Studies | ML Algorithms | Printing Parameters | Estimated Output Parameters | Number of Samples | Material Type | Algorithm Success Rates |
---|---|---|---|---|---|---|
Nikzad et al., 2025 [84] | CatBoost XGBoost Gradient Boosting Machine Light Gradient Boosting Machine | Nozzle diameter Raster direction Infill density Layer thickness Print speed Nozzle temperature | Ultimate tensile strength | 329 | PLA | With the integration of the Ensemble method into the CatBoost algorithm, the accuracy of the model increased to R2 = 98.05%. |
Ali et al., 2024 [87] | Random Forest Regression | Flow rate Layer thickness Nozzle temperature | Elongation at fracture Tensile strength | 27 | PLA-APHA Biodegradable blend | The success of the model was determined as 96% accuracy rate. |
Hossain et al., 2024 [88] | Polynomial Regression | Extrusion temperature Print speed | Extrusion temperature Tensile strength Elongation at fracture | 4 | PLA Recycled plastics HDPE TiO2 | With the addition of TiO2, durability and insulation properties were improved; in addition, 4.29% elongation at fracture was obtained. |
Hossain et al., 2022 [89] | Linear Regression | Nozzle temperature Layer thickness Printing speed | Tensile strength Surface Roughness Thermal stability | 6 | PLA HDPE Recycled plastic | The ML-based prediction model predicted the nozzle temperature with 99.36% accuracy. |
Sharma et al., 2024b [90] | Genetic Algorithm Particle Swarm Optimization Raven Search Optimization Differential Evolution | Coating solution concentration Immersion time Stirrer speed Infill density | Bending Tensile strength | 32 | PLA | Genetic Algorithm provided the closest predictions to the experimental results and achieved the highest mechanical properties. Differential Evolution and Response Surface Methodology (RSM) approaches also provided successful results. |
Sharma et al., 2024a [91] | Gradient Boosting Regression | Infill density Layer height Wall thickness Printing speed | Tensile strength Flexural strength | 100 | PLA | Gradient Boosting Regression achieved the best accuracy with R2 value over 92% and resulted in minimal RMSE and MAE values. |
Tănase et al., 2024 [92] | Random Forest Gradient Boosting AdaBoost Neural Network Support Vector Machine K-Nearest Neighbors Linear Regression | Layer thickness Fill ratio | Young’s modulus, Ultimate tensile strength elongation at break | 54 | Recycled-PLA | The Random Forest model provided the best predictions with 99% accuracy. |
Tandon et al., 2024 [93] | Nonlinear Regression | Fill density Print orientation material type | Tensile strength Elastic modulus | 20 | ABS PLA PLA + CF | Model accuracy was over 90%. |
Kharate et al., 2024 [94] | XGBoost | Biochar content Layer thickness Raster angle Filling pattern and density | Ultimate tensile strength Flexural strength Impact strength | 16 | PLA composites enhanced with biochar reinforcement | The XGBoost model achieved an accuracy of 96%. |
Selvan et al., 2024 [43] | Artificial Neural Network | Infill density Printing speed Layer thickness | Surface roughness Tensile strength | 27 | PLA | The ANN predicted the surface quality with 98% accuracy. |
Marappan et al., 2024 [95] | Support Vector Machine | Infill percentage Print speed and pattern type | Tensile strength Hardness | 9 | PLA CF composite | The SVM model was found to be successful in predictions with an accuracy rate of 95.65%. |
Manola et al., 2024 [96] | Classification Regression Tree | Printing temperature Infill pattern Infill density | Melt flow index Ultimate tensile strength | 27 | ABS Al- and Cu-reinforced composite | The model showed an accuracy rate of 91.54%. |
Ghasemi et al., 2024 [97] | Artificial Neural Network Extreme Gradient Boosting Decision Tree Gradient Boosting Tree Random Forest CatBoost | Layer thickness Nozzle diameter Fill rate Print speed Nozzle temperature Table temperature | Nonlinear bending Torsional behaviors Critical buckling loads Buckling mode changes depending On cell angle Size ratios | 1926 | PLA biopolymer | The Random Forest model provided the highest success in buckling predictions with MSE = 13.31 and R2 = 99.9%, while CatBoost showed superiority in bending predictions with MSE = 0.00094 and R2 = 99.9%. |
Ulkir et al., 2023 [98] | Gaussian Process Regression Support Vector Machine Linear Regression Decision Tree Regressor | Layer thickness Infill volume Table temperature Printing direction | Energy consumption (Wh) | 81 | ABS | Gaussian Process Regression model provided high accuracy in energy consumption with R2 = 0.99 and MAE = 0.016. |
Jain et al., 2024 [99] | Linear, Lasso, Ridge Regression Decision Tree Random Forest Gradient Boost Extreme Gradient Boost Adaptive Boost Regression | Layer thickness Raster orientation Feed rate | Flexural strength | 54 | MWCNT takviyeli PLA | The XGBR model showed the highest performance in flexural strength with RMSE = 1.776, MAE = 1.366, and R2 = 0.99. |
Khusheef et al., 2024 [83] | CNN-LSTM | Layer thickness Infill pattern Infill density Nozzle temperature Print speeds Thermal and IMU data | Surface roughness Tensile strength Elongation at fracture Microsurface hardness Warpage | 27 | PLA | The best estimate of tensile strength was achieved with 99% accuracy; microsurface hardness and warpage estimates showed lower accuracy than other properties. |
Ege et al., 2023 [100] | XGBoost Random Forest Artificial Neural Network Light Gradient Boosting Machine Ordinary Least Squares Regression | Nozzle temperature Printing speed Infill density Layer height | Tensile strength | 68 | PLA | The XGBoost model provided R2 = 0.98 on training data and R2 = 0.94 on test data. |
Ziadia et al., 2023 [101] | XGBoost Random Forest | Printing temperature Layer thickness Printing speed | Tensile strength Young’s modulus Stress at break | 54 | PLA PLA-CF | The parameters optimized by Genetic Algorithm provided high mechanical properties for PLA-CF material. The best tensile strength was obtained with a temperature of 222.28 °C, a layer thickness of 0.261 mm, and a printing speed of 40.30 mm/s. |
Le et al., 2023 [102] | Surrogate Neural Network Model | Layer thickness Printing direction Infill density | Flexure strength Bending stiffness | - | PLA | With the finite element model, the error was 6.13%, the highest strength was provided with a low layer thickness, and the bending stiffness was highest at 0.1 mm layer thickness. |
Butt & Mohaghegh, 2023 [85] | CNN Random Forest | Layer height Extrusion temperature Speed | Surface roughness Hardness Tensile strength | 40 | PLA | The Random Forest classifier provided higher accuracy based on digital twin simulation data, while the CNN model performed lower. |
Mishra & Jatti, 2023 [103] | Q- Learning (Reinforcement Learning) | Printing speed Extrusion temperature Layer height Infill percentage | Impact strength Bending strength Tensile strength | 31 | PLA | The Q-Learning algorithm was successful in parameter optimization and predicted the tensile strength with an error rate of 0.66%, flexural strength with an error rate of 4.37%, and impact strength with an error rate of 10.2%, which is close to the experimental results. |
Ogunsanya et al., 2023 [104] | Multilayer Perceptron | Layer thickness Printing direction Extrusion temperature Build temperature printing speed | Dimensional accuracy Porosity Tensile strength | 243 | PLA | Three neurons, 0.0001 learning rate, and 5000 epochs were determined as the best hyperparameters for the MLP model. The dimensional accuracy of the model was evaluated with RMSE = 1.7, and the optimal learning rate was determined as 0.0001. |
Grozav et al., 2023 [105] | Artificial Neural Network | Nozzle temperature Print speed Layer orientation | Tensile strength Stress–strain behavior | 48 | PLA | The ANN model predicted the tensile strength with 93% accuracy. |
Jayasudha et al., 2022 [86] | XGBoost Gradient Boost AdaBoost Random Forest Linear Regression | Extrusion temperature Layer height Shell thickness | Tensile strength | 27 | PLA | The XGBoost model provided the best performance in tensile strength prediction with 94.6% R2. |
Silva et al., 2022 [106] | Artificial Neural Network Genetic Algorithms | Printing speed Fill rate Extrusion temperature Filament thickness Extrusion direction | Tensile strength | 149 | PLA | The R2 value of the model is over 90%. |
Charalampous et al., 2022 [107] | Random Forest Support Vector Regression K-Nearest Neighbors | Layer height Print speed Print temperature | Tensile strength | 125 | PLA | The KNN model provided the best prediction accuracy with the combination of low layer thickness, moderate printing speed, and 210 °C printing temperature. |
Jatti et al., 2022 [108] | Nonlinear Regression | Infill percentage Layer thickness Printing speed Extrusion temperature | Tensile strength Impact strength bending strength | 31 | PLA | Nonlinear regression predicted the flexural strength with an error rate of 3.474%. |
Soundararajan et al., 2025 [109] | Random Forest J48 (Decision Tree) Naive Bayes | Layer height Print speed Nozzle temperature | Surface roughness | 42 | PLA Plus | Application of Random Forest and J48 algorithms for surface roughness estimation provided accuracy rates above 90% for both models. |
Zhu et al., 2024 [74] | Gradient-Boosting Decision Trees 1D-CNN | Layer thickness Scanning speed Material flow Nozzle temperature | Surface roughness | 625 | PLA | The FE-GBDT model exhibited high performance in surface roughness prediction, providing accuracy above 99%. |
Sangwan et al., 2023 [110] | Autoregressive, Regression Models | Layer thickness Infill density Extruder temperature Table temperature Scale | Carbon footprint Printing time Surface roughness | 27 | PLA | The model was able to predict the remaining life of the nozzle with 96.96% accuracy. |
Z. Wang et al., 2024 [81] | Particle Swarm Optimization Genetic Algorithm Multilayer Perceptron Support Vector Regression | Fill density Nozzle temperature Layer thickness | Hardness Material mixture properties | 286 | PLA TPU PETG ABS | The GA-MLP-3D model provided successful results with an R2 accuracy rate of 87.1%. |
Ozdemir et al., 2024 [111] | Random Forest | Nozzle temperature Extrusion flow Layer height | Print quality (weight deviation, inner diameter, surface smoothness) | 186 | PLA PLA/NC PLA/GNP | The RF demonstrated successful performance with an accuracy rate of 92.8% in estimating the weight deviation. |
3.3. Machine Learning Applications in Non-Polymeric 3D-Printed Materials
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
AM | Additive Manufacturing |
ML | Machine Learning |
AI | Artificial Intelligence |
FDM | Fused Deposition Modeling |
FFF | Fused Filament Fabrication |
PLA | Polylactic Acid |
ABS | Acrylonitrile Butadiene Styrene |
PETG | Polyethylene Terephthalate Glycol |
TPU | Thermoplastic Polyurethane |
ASA | Acrylonitrile Styrene Acrylate |
PA | Polyamide (Nylon) |
PP | Polypropylene |
HDPE | High-Density Polyethylene |
TPE | Thermoplastic Elastomer |
ANN | Artificial Neural Network |
CNN | Convolutional Neural Network |
SVM | Support Vector Machine |
DL | Deep Learning |
RF | Random Forest |
XGBoost | Extreme Gradient Boosting |
GA | Genetic Algorithm |
PSO | Particle Swarm Optimization |
RSM | Response Surface Methodology |
MLP | Multilayer Perceptron |
RMSE | Root Mean Square Error |
MAE | Mean Absolute Error |
R2 | Coefficient of Determination |
IMU | Inertial Measurement Unit |
CNN-LSTM | Convolutional Neural Network-Long Short-Term Memory |
CAD | Computer-Aided Design |
References
- Conner, B.P.; Manogharan, G.P.; Martof, A.N.; Rodomsky, L.M.; Rodomsky, C.M.; Jordan, D.C.; Limperos, J.W. Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services. Addit. Manuf. 2014, 1, 64–76. [Google Scholar] [CrossRef]
- Farazin, A.; Mohammadimehr, M. Effect of Different Parameters on the Tensile Properties of Printed Polylactic Acid Samples by FDM: Experimental Design Tested with MDs Simulation. Int. J. Adv. Manuf. Technol. 2021, 108, 103–108. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Karayel, E.; Bozkurt, Y. Additive Manufacturing Method and Different Welding Applications. J. Mater. Res. Technol. 2020, 9, 11424–11438. [Google Scholar] [CrossRef]
- Loh, G.H.; Pei, E.; Gonzalez-Gutierrez, J.; Monzón, M. An Overview of Material Extrusion Troubleshooting. Appl. Sci. 2020, 10, 4776. [Google Scholar] [CrossRef]
- Imran, M.M.; Che Idris, A.; De Silva, L.C.; Kim, Y.B.; Abas, P.E. Advancements in 3D Printing: Directed Energy Deposition Techniques, Defect Analysis, and Quality Monitoring. Technologies 2024, 12, 86. [Google Scholar] [CrossRef]
- Shakor, P.; Chu, S.H.; Puzatova, A.; Dini, E. Review of Binder Jetting 3D Printing in the Construction Industry. Prog. Addit. Manuf. 2022, 7, 643–669. [Google Scholar] [CrossRef]
- Bhatt, P.M.; Kabir, A.M.; Peralta, M.; Bruck, H.A.; Gupta, S.K. A Robotic Cell for Performing Sheet Lamination-Based Additive Manufacturing. Addit. Manuf. 2019, 27, 278–289. [Google Scholar] [CrossRef]
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Advances in Powder Bed Fusion 3D Printing in Drug Delivery and Healthcare. Adv. Drug Deliv. Rev. 2021, 174, 406–424. [Google Scholar] [CrossRef]
- Gülcan, O.; Günaydın, K.; Tamer, A. The State of the Art of Material Jetting—A Critical Review. Polymers 2021, 13, 2829. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3d Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, H.; Singh, I.; Bharti, S.; Kumar, D.; Siebert, G.; Koloor, S.S.R. A Comprehensive Review of FDM Printing in Sensor Applications: Advancements and Future Perspectives. J. Manuf. Process. 2024, 113, 152–170. [Google Scholar] [CrossRef]
- Al Khawaja, H.; Mansour, A.; Alabdouli, H.; Ahmed, W.; Alqaydi, H.; Al Jassmi, H. Open Source 3D Printer: A Case Study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Dubai, United Arab Emirates, 10–12 March 2020. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783030561277. [Google Scholar]
- Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W.S.W.; Rahman, M.M. Fused Deposition Modeling: Process, Materials, Parameters, Properties, and Applications. Int. J. Adv. Manuf. Technol. 2022, 120, 1531–1570. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Domingo-Espin, M.; Puigoriol-Forcada, J.M.; Garcia-Granada, A.A.; Llumà, J.; Borros, S.; Reyes, G. Mechanical Property Characterization and Simulation of Fused Deposition Modeling Polycarbonate Parts. Mater. Des. 2015, 83, 670–677. [Google Scholar] [CrossRef]
- Mishra, V.; Negi, S.; Kar, S.; Sharma, A.K.; Rajbahadur, Y.N.K.; Kumar, A. Recent Advances in Fused Deposition Modeling Based Additive Manufacturing of Thermoplastic Composite Structures: A Review. J. Thermoplast. Compos. Mater. 2023, 36, 3094–3132. [Google Scholar] [CrossRef]
- Zohdi, N.; Yang, R.C. Material Anisotropy in Additively Manufactured Polymers and Polymer Composites: A Review. Polymers 2021, 13, 3368. [Google Scholar] [CrossRef]
- Stoica, C.; Maier, R.; Istrate, A.; Mandoc, A. Assessment of Static Mechanical Properties of Additively Manufactured Polylactic Acid (PLA) on Entry-Level FDM 3D Printer. Mater. Plast. 2021, 58, 176–184. [Google Scholar] [CrossRef]
- Romani, A.; Perusin, L.; Ciurnelli, M.; Levi, M. Characterization of PLA Feedstock after Multiple Recycling Processes for Large-Format Material Extrusion Additive Manufacturing. Mater. Today Sustain. 2024, 25, 100636. [Google Scholar] [CrossRef]
- Chong, W.J.; Pejak Simunec, D.; Trinchi, A.; Kyratzis, I.; Li, Y.; Wright, P.; Shen, S.; Sola, A.; Wen, C. Advancing the Additive Manufacturing of PLA-ZnO Nanocomposites by Fused Filament Fabrication. Virtual Phys. Prototyp. 2024, 19, e2285418. [Google Scholar] [CrossRef]
- Ramezani Dana, H.; Barbe, F.; Delbreilh, L.; Azzouna, M.; Ben Guillet, A.; Breteau, T. Polymer Additive Manufacturing of ABS Structure: Influence of Printing Direction on Mechanical Properties. J. Manuf. Process. 2019, 44, 288–298. [Google Scholar] [CrossRef]
- Kuo, C.C.; Wang, C.W.; Lee, Y.F.; Liu, Y.L.; Qiu, Q.Y. A Surface Quality Improvement Apparatus for ABS Parts Fabricated by Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2017, 89, 635–642. [Google Scholar] [CrossRef]
- Szykiedans, K.; Credo, W.; Osiński, D. Selected Mechanical Properties of PETG 3-D Prints. Procedia Eng. 2017, 177, 455–461. [Google Scholar] [CrossRef]
- Salifu, S.; Desai, D.; Ogunbiyi, O.; Mwale, K. Recent Development in the Additive Manufacturing of Polymer-Based Composites for Automotive Structures—A Review. Int. J. Adv. Manuf. Technol. 2022, 119, 6877–6891. [Google Scholar] [CrossRef]
- Dong, Y.; Milentis, J.; Pramanik, A. Additive Manufacturing of Mechanical Testing Samples Based on Virgin Poly (Lactic Acid) (PLA) and PLA/Wood Fibre Composites. Adv. Manuf. 2018, 6, 71–82. [Google Scholar] [CrossRef]
- Giani, N.; Maccaferri, E.; Benelli, T.; Bovo, M.; Torreggiani, D.; Campari, E.G.; Tassinari, P.; Giorgini, L.; Mazzocchetti, L. Valorization of Agro-Wastes as Fillers in PLA-Based Biocomposites for Increasing Sustainability in Fused Deposition Modeling Additive Manufacturing. Materials 2024, 17, 1421. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.Y.A.Y.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Nurazzi, N.M.; et al. Polylactic Acid (Pla) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers 2021, 13, 1326. [Google Scholar] [CrossRef]
- Zarei, M.; Hasanzadeh Azar, M.; Sayedain, S.S.; Shabani Dargah, M.; Alizadeh, R.; Arab, M.; Askarinya, A.; Kaviani, A.; Beheshtizadeh, N.; Azami, M. Material Extrusion Additive Manufacturing of Poly(Lactic Acid)/Ti6Al4V@calcium Phosphate Core-Shell Nanocomposite Scaffolds for Bone Tissue Applications. Int. J. Biol. Macromol. 2024, 255, 128040. [Google Scholar] [CrossRef]
- Kadhum, A.H.; Al-Zubaidi, S.; Alkareem, S.S.A. Optimization of Mechanical Properties and Surface Characteristics of PLA+ 3D Printing Materials. Int. J. Chem. Eng. 2023, 2023. [Google Scholar] [CrossRef]
- Ramírez-Revilla, S.; Camacho-Valencia, D.; Gonzales-Condori, E.G.; Márquez, G. Evaluation and Comparison of the Degradability and Compressive and Tensile Properties of 3D Printing Polymeric Materials: PLA, PETG, PC, and ASA. MRS Commun. 2023, 13, 55–62. [Google Scholar] [CrossRef]
- Chong, S.; Chung-kuang Yang, T.; Lee, K.; Chen, Y.; Ching Juan, J.; Joyce Tiong, T.; Huang, C.; Pan, G. Evaluation of the Physico-Mechanical Properties of Activated-Carbon Enhanced Recycled Polyethylene/Polypropylene 3D Printing Filament. Sādhanā 2020, 45, 57. [Google Scholar] [CrossRef]
- Marco, V.; Massimo, G.; Manuela, G. Additive Manufacturing of Flexible Thermoplastic Polyurethane (TPU): Enhancing the Material Elongation through Process Optimisation. Prog. Addit. Manuf. 2024, 10, 2877–2891. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, W.; Liu, T. Fused Deposition Modeling 3D Printing of Polyamide-Based Composites and Its Applications. Compos. Commun. 2020, 21, 100413. [Google Scholar] [CrossRef]
- León-Calero, M.; Reyburn Valés, S.C.; Marcos-Fernández, Á.; Rodríguez-Hernandez, J. 3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity. Polymers 2021, 13, 3551. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling. Compos. B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Hlinka, J.; Kraus, M.; Hajnys, J.; Pagac, M.; Petru, J.; Brytan, Z.; Tanski, T. Complex Corrosion Properties of Aisi 316L Steel Prepared by 3D Printing Technology for Possible Implant Applications. Materials 2020, 13, 1527. [Google Scholar] [CrossRef]
- Badogu, K.; Kumar, R.; Kumar, R. 3D Printing of Glass Fiber-Reinforced Polymeric Composites: A Review. J. Inst. Eng. Ser. C 2022, 103, 1285–1301. [Google Scholar] [CrossRef]
- Song, H.; Li, X. An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites. Materials 2021, 14, 2950. [Google Scholar] [CrossRef] [PubMed]
- Aktepe, E.; Aktepe, Ş. Pla ve Geri Dönüştürülmüş Pet Filamentlerinin 3D Fdm Baskida Boyutsal Doğruluk ve Geriçekilme Performansinin Karşilaştirilmasi. Int. J. 3D Print. Technol. Digit. Ind. 2024, 8, 114–123. [Google Scholar] [CrossRef]
- Tontowi, A.E.; Ramdani, L.; Erdizon, R.V.; Baroroh, D.K. Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part. Int. J. Eng. Technol. 2017, 9, 589–600. [Google Scholar] [CrossRef]
- Selvan, S.P.; Raja, D.E.; Muthukumar, V.; Sonar, T. Optimization of Process Parameters and Predicting Surface Finish of PLA in Additive Manufacturing—A Neural Network Approach. Int. J. Interact. Des. Manuf. 2024, 19, 2511–2520. [Google Scholar] [CrossRef]
- Jin, L.; Zhai, X.; Wang, K.; Zhang, K.; Wu, D.; Nazir, A.; Jiang, J.; Liao, W.H. Big Data, random forest, and Digital Twin Assisted Additive Manufacturing: A Review. Mater. Des. 2024, 244, 113086. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, D.; Zhao, X.; Gao, C.; Lu, L.; He, Y.; Bai, W. Machine Learning-Driven 3D Printing: A Review. Appl. Mater. Today 2024, 39, 102306. [Google Scholar] [CrossRef]
- Goh, G.D.; Sing, S.L.; Yeong, W.Y. A Review on Machine Learning in 3D Printing: Applications, Potential, and Challenges. Artif. Intell. Rev. 2021, 54, 63–94. [Google Scholar] [CrossRef]
- Rojek, I.; Mikołajewski, D.; Kempiński, M.; Galas, K.; Piszcz, A. Emerging Applications of Machine Learning in 3D Printing. Appl. Sci. 2025, 15, 1781. [Google Scholar] [CrossRef]
- Bramer, W.M.; Rethlefsen, M.L.; Kleijnen, J.; Franco, O.H. Optimal Database Combinations for Literature Searches in Systematic Reviews: A Prospective Exploratory Study. Syst. Rev. 2017, 6, 245. [Google Scholar] [CrossRef]
- Cavacini, A. What Is the Best Database for Computer Science Journal Articles? Scientometrics 2015, 102, 2059–2071. [Google Scholar] [CrossRef]
- Li, K.; Rollins, J.; Yan, E. Web of Science Use in Published Research and Review Papers 1997–2017: A Selective, Dynamic, Cross-Domain, Content-Based Analysis. Scientometrics 2018, 115, 1–20. [Google Scholar] [CrossRef]
- Abbili, K.K. Explainable Artificial Intelligence (XAI) and Machine Learning Technique for Prediction of Properties in Additive Manufacturing. J. Adv. Manuf. Syst. 2025, 24, 229–240. [Google Scholar] [CrossRef]
- García-Collado, A.; Romero-Carrillo, P.E.; Dorado-Vicente, R.; Gupta, M.K. Studying the Effect of Short Carbon Fiber on Fused Filament Fabrication Parts Roughness via Machine Learning. 3D Print. Addit. Manuf. 2023, 10, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Lee, S.; Baek, A.M.C.; Park, E.; Kim, N. Downskin Surface Roughness Prediction with Machine Learning for As-Built CM247LC Fabricated via Powder Bed Fusion with a Laser Beam. 3D Print. Addit. Manuf. 2024, 11, 1510–1522. [Google Scholar] [CrossRef] [PubMed]
- Abdulshahed, A.M.; Wafa, F. Surface Roughness Prediction in Additive Manufacturing: Presenting the Power of Neural Networks Compared to Linear Regression. J. Adv. Manuf. Syst. 2025, 24, 69–88. [Google Scholar] [CrossRef]
- 3d Printing Parameters and Machine Learning and Hardness (Topic)-9-All Databases 3d Printing Parameters and Machine Learning and Hardness (Topic). Available online: https://www.webofscience.com/wos/woscc/summary/a6a36c67-c141-4ba2-aeb8-30f8cccb2c59-012f2d34b0/relevance/1 (accessed on 30 November 2024).
- 3d Printing Parameters and Machine Learning and Tensile Strength (Topic)-41-All Databases 3d Printing Parameters and Machine Learning and Tensile Strength (Topic). Available online: https://www.webofscience.com/wos/woscc/summary/855ffec7-b0b7-4ad5-891f-2cdfdc2c6574-012f2cebb7/relevance/1 (accessed on 30 November 2024).
- 3d Printing Parameters and Machine Learning and Roughness (Topic)-29-All Databases 3d Printing Parameters and Machine Learning and Roughness (Topic). Available online: https://www.webofscience.com/wos/woscc/summary/68704b87-6d1f-403f-9e7a-5a023fa01857-012f2b4c92/relevance/1 (accessed on 30 November 2024).
- Keşkekçi, A.B.; Özkahraman, M.; Bayrakçi, H.C. A Review on the Impact of Polylactic Acid (PLA) Material on Products Manufactured Using Fused Deposition Modeling (FDM) Additive Manufacturing Method. Gazi J. Eng. Sci. 2023, 9, 158–173. [Google Scholar] [CrossRef]
- Kaptan, A.; Kartal, F. Advancements in Polylactic Acid Research: From Material Properties to Sustainable Applications. Eur. Mech. Sci. 2024, 8, 104–114. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef]
- Rutkowski, J.V.; Levint, B.C. Acrylonitrile-Butadiene-Styrene Copolymers (ABS): Pyrolysis and Combustion Products and Their Toxicity-A Review of the Literature. Fire Mater. 1986, 10, 93–105. [Google Scholar] [CrossRef]
- Dey, A.; Eagle, I.N.R.; Yodo, N. A Review on Filament Materials for Fused Filament Fabrication. J. Manuf. Mater. Process. 2021, 5, 69. [Google Scholar] [CrossRef]
- Doshi, M.; Mahale, A.; Singh, S.K.; Deshmukh, S. Printing Parameters and Materials Affecting Mechanical Properties of FDM-3D Printed Parts: Perspective and Prospects. Mater. Today Proc. 2021, 50, 2269–2275. [Google Scholar] [CrossRef]
- Abeykoon, C.; Sri-Amphorn, P.; Fernando, A. Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structures. Int. J. Lightweight Mater. Manuf. 2020, 3, 284–297. [Google Scholar] [CrossRef]
- Ansari, A.A.; Kamil, M. Effect of Print Speed and Extrusion Temperature on Properties of 3D Printed PLA Using Fused Deposition Modeling Process. Mater. Today Proc. 2021, 45, 5462–5468. [Google Scholar] [CrossRef]
- Antreas, K.; Piromalis, D. Employing a Low-Cost Desktop 3D Printer: Challenges, and How to Overcome Them by Tuning Key Process Parameters. Int. J. Mech. Appl. 2021, 10, 11–19. [Google Scholar] [CrossRef]
- Bakhtiari, H.; Aamir, M.; Tolouei-Rad, M. Effect of 3D Printing Parameters on the Fatigue Properties of Parts Manufactured by Fused Filament Fabrication: A Review. Appl. Sci. 2023, 13, 904. [Google Scholar] [CrossRef]
- ISO 527-2; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
- Yao, T.; Deng, Z.; Zhang, K.; Li, S. A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations. Compos. B Eng. 2019, 163, 393–402. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Yahya, A. Effects of 3D Printing Parameters on Mechanical Properties of ABS Samples. Designs 2023, 7, 136. [Google Scholar] [CrossRef]
- Gonzalez, A.; Martin-Gil, J.; Saja, J.A.; De Rodriguez, R. Thermal Degradation of Stabilized Rigid Poly(Vinyl Chloride) Monitored by Microhardness Measurements. J. Appl. Polym. Sci. 1986, 31, 717–721. [Google Scholar] [CrossRef]
- Zeng, Y.S.; Hsueh, M.H.; Lai, C.J.; Hsiao, T.C.; Pan, C.Y.; Huang, W.C.; Chang, C.H.; Wang, S.H. An Investigation on the Hardness of Polylactic Acid Parts Fabricated via Fused Deposition Modeling. Polymers 2022, 14, 2789. [Google Scholar] [CrossRef]
- Lü, Y.; Liu, C.; Zhang, Y.; Jiang, C.; Bai, X.; Xing, Z. 3D Roughness Prediction Modeling and Evaluation of Textured Liner of Piston Component-Cylinder System. Chin. J. Mech. Eng. 2024, 37, 99. [Google Scholar] [CrossRef]
- Zhu, J.; Su, Z.; Wang, Q.; Lan, Z.; Siu-fai Chan, F.; Han, Z.; Wang, Z.; Wing-fai Wong, S.; Chi-fung Ngan, A. Surface Quality Prediction and Quantitative Evaluation of Process Parameter Effects for 3D Printing with Transfer Learning-Enhanced Gradient-Boosting Decision Trees. Expert Syst. App.l 2024, 237, 121478. [Google Scholar] [CrossRef]
- Bickel, P.; Diggle, P.; Fienberg, S.; Gather, U.; Olkin, I.; Zeger, S. Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ashton, J.J.; Young, A.; Johnson, M.J.; Beattie, R.M. Using Machine Learning to Impact on Long-Term Clinical Care: Principles, Challenges, and Practicalities. Pediatr. Res. 2023, 93, 324–333. [Google Scholar] [CrossRef]
- Hong, Y.; Hou, B.; Jiang, H.; Zhang, J. Machine Learning and Artificial Neural Network Accelerated Computational Discoveries in Materials Science. WIREs Comput. Mol. Sci. 2020, 10, e1450. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Suo, S.; Guo, J.; Rao, W.F. Predicting 4D Hardness Property from 3D Datasets for Performance-Tunable Material Extrusion Additive Manufacturing. Mater. Today Commun. 2024, 38, 108216. [Google Scholar] [CrossRef]
- Lao, W.; Li, M.; Wong, T.N.; Tan, M.J.; Tjahjowidodo, T. Improving Surface Finish Quality in Extrusion-Based 3D Concrete Printing Using Machine Learning-Based Extrudate Geometry Control. Virtual Phys. Prototyp. 2020, 15, 178–193. [Google Scholar] [CrossRef]
- Khusheef, A.S.; Shahbazi, M.; Hashemi, R. Predicting 3D Printed Plastic Part Properties: A Deep Learning Approach with Thermographic and Vibration Data Fusion. Expert Syst. Appl. 2024, 255, 124605. [Google Scholar] [CrossRef]
- Nikzad, M.H.; Heidari-Rarani, M.; Rasti, R.; Sareh, P. Machine Learning-Driven Prediction of Tensile Strength in 3D-Printed PLA Parts. Expert Syst. Appl. 2025, 264, 125836. [Google Scholar] [CrossRef]
- Butt, J.; Mohaghegh, V. Combining Digital Twin and Machine Learning for the Fused Filament Fabrication Process. Metals 2023, 13, 24. [Google Scholar] [CrossRef]
- Jayasudha, M.; Elangovan, M.; Mahdal, M.; Priyadarshini, J. Accurate Estimation of Tensile Strength of 3D Printed Parts Using Machine Learning Algorithms. Processes 2022, 10, 1158. [Google Scholar] [CrossRef]
- Ali, S.; Nouzil, I.; Mehra, V.; Eltaggaz, A.; Deiab, I.; Pervaiz, S. Integrated Optimization Scheme for 3D Printing of PLA-APHA Biodegradable Blends. Prog. Addit. Manuf. 2024, 10, 875–886. [Google Scholar] [CrossRef]
- Hossain, M.I.; Chowdhury, M.A.; Mahamud, S.; Saha, R.K.; Zahid, M.S.; Ferdous, J.; Hossain, N.; Mobarak, M.H. Electro-Mechanical Analysis of Nanostructured Polymer Matrix Composite Materials for 3D Printing Using Machine Learning. Chem. Eng. J. Adv. 2024, 19, 100626. [Google Scholar] [CrossRef]
- Hossain, M.I.; Chowdhury, M.A.; Zahid, M.S.; Sakib-Uz-Zaman, C.; Rahaman, M.L.; Kowser, M.A. Development and Analysis of Nanoparticle Infused Plastic Products Manufactured by Machine Learning Guided 3D Printer. Polym. Test. 2022, 106, 107429. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, V.; Mudgal, D.; Srivastava, V. Optimization of Polydopamine Coating Process for Poly Lactic Acid-Based 3D Printed Bone Plates Using Machine Learning Approaches. Polym. Eng. Sci. 2024, 64, 279–295. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, V.; Mudgal, D.; Srivastava, V. Machine Learning for Forecasting the Biomechanical Behavior of Orthopedic Bone Plates Fabricated by Fused Deposition Modeling. Rapid Prototyp. J. 2024, 30, 441–459. [Google Scholar] [CrossRef]
- Tănase, M.; Portoacă, A.I.; Diniță, A.; Brănoiu, G.; Zamfir, F.; Sirbu, E.E.; Călin, C. Optimizing Mechanical Properties of Recycled 3D-Printed PLA Parts for Sustainable Packaging Solutions Using Experimental Analysis and Machine Learning. Polymers 2024, 16, 3268. [Google Scholar] [CrossRef] [PubMed]
- Tandon, S.; Singh, S.K.; Kacker, R.; Gautam, S.S.; Tamang, S.K. Multi-Response Optimization of 3D Printed Parts with Triangular Patterns Using Nonlinear Machine Learning Regressor Technique. J. Mater. Eng. Perform. 2024, 34, 10642–10658. [Google Scholar] [CrossRef]
- Kharate, N.; Anerao, P.; Kulkarni, A.; Abdullah, M. Explainable AI Techniques for Comprehensive Analysis of the Relationship between Process Parameters and Material Properties in FDM-Based 3D-Printed Biocomposites. J. Manuf. Mater. Process. 2024, 8, 171. [Google Scholar] [CrossRef]
- Marappan, K.; Jenarthanan, M.P.; Begum, K.G.; Moorthy, V. Prediction of Effective Parameters for 3D Printing of Poly Lactic Acid-Carbon Fibre Composites Using Intelligent Frameworks Based on Mechanical Response. Pigment. Resin Technol. 2024, 54, 549–560. [Google Scholar] [CrossRef]
- Manola, M.S.; Singh, B.; Singla, M.K.; Chohan, J.S.; Kumar, R.; Kumar, R.; Bisht, Y.S.; Kumar, R.; Alkahtani, M.Q.; Islam, S.; et al. Investigation of Melt Flow Index and Tensile Properties of Dual Metal Reinforced Polymer Composites for 3D Printing Using Machine Learning Approach: Biomedical and Engineering Applications. AIP Adv. 2024, 14, 055016. [Google Scholar] [CrossRef]
- Ghasemi, F.; Salari, E.; Salari, A.; Rastgoo, A.; Li, D.; Deng, J. Integrating Analytical and Machine Learning Methods for Investigating Nonlinear Bending and Post-Buckling Behavior of 3D-Printed Auxetic Tubes. Eng. Comput. 2024, 41, 1809–1846. [Google Scholar] [CrossRef]
- Ulkir, O.; Bayraklılar, M.S.; Kuncan, M. Energy Consumption Prediction of Additive Manufactured Tensile Strength Parts Using Artificial Intelligence. 3D Print. Addit. Manuf. 2023, 11, e1909–e1920. [Google Scholar] [CrossRef]
- Jain, A.; Upadhyay, S.; Pathik, K.; Raj, T.; Sahai, A.; Sharma, R.S. Predictive Modelling of Flexural Behaviour of Polymer Composites: A Machine Learning Approach through Material Extrusion. Prog. Addit. Manuf. 2024, 10, 5135–5153. [Google Scholar] [CrossRef]
- Ege, D.; Sertturk, S.; Acarkan, B.; Ademoglu, A. Machine Learning Models to Predict the Relationship between Printing Parameters and Tensile Strength of 3D Poly (Lactic Acid) Scaffolds for Tissue Engineering Applications. Biomed. Phys. Eng. Express 2023, 9, 065014. [Google Scholar] [CrossRef]
- Ziadia, A.; Habibi, M.; Kelouwani, S. Machine Learning Study of the Effect of Process Parameters on Tensile Strength of FFF PLA and PLA-CF. Eng 2023, 4, 2741–2763. [Google Scholar] [CrossRef]
- Le, C.; Kolasangiani, K.; Nayyeri, P.; Bougherara, H. Experimental and Numerical Investigation of 3D-Printed Bone Plates under Four-Point Bending Load Utilizing Machine Learning Techniques. J. Mech. Behav. Biomed. Mater. 2023, 143, 105885. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Jatti, V.S. Reinforcement Learning Based Approach for the Optimization of Mechanical Properties of Additively Manufactured Specimens. Int. J. Interact. Des. Manuf. 2023, 17, 2045–2053. [Google Scholar] [CrossRef]
- Ogunsanya, M.; Isichei, J.; Desai, S. Grid Search Hyperparameter Tuning in Additive Manufacturing Processes. Manuf. Lett. 2023, 35, 1031–1042. [Google Scholar] [CrossRef]
- Grozav, S.D.; Sterca, A.D.; Kočiško, M.; Pollák, M.; Ceclan, V. Artificial Neural Network-Based Predictive Model for Finite Element Analysis of Additive-Manufactured Components. Machines 2023, 11, 547. [Google Scholar] [CrossRef]
- Silva, M.A.; da Amaro Junior, B.; Medeiros, R.R.B.; Pinheiro, P.R. A Neuroevolutionary Model to Estimate the Tensile Strength of Manufactured Parts Made by 3D Printing. Algorithms 2022, 15, 263. [Google Scholar] [CrossRef]
- Charalampous, P.; Kladovasilakis, N.; Kostavelis, I.; Tsongas, K.; Tzetzis, D.; Tzovaras, D. Machine Learning-Based Mechanical Behavior Optimization of 3D Print Constructs Manufactured via the FFF Process. J. Mater. Eng. Perform. 2022, 31, 4697–4706. [Google Scholar] [CrossRef]
- Jatti, V.S.; Sapre, M.S.; Jatti, A.V.; Khedkar, N.K.; Jatti, V.S. Mechanical Properties of 3D-Printed Components Using Fused Deposition Modeling: Optimization Using the Desirability Approach and Machine Learning Regressor. Appl. Syst. Innov. 2022, 5, 112. [Google Scholar] [CrossRef]
- Soundararajan, R.; Sathishkumar, A.; Aathil, S.A.; Chandran, N.G. Evaluating Machine Learning Methods for Predicting Surface Roughness of FDM Printed Parts Using PLA plus Material. Int. J. Interact. Des. Manuf. 2025, 1–14. [Google Scholar] [CrossRef]
- Sangwan, K.S.; Kumar, R.; Herrmann, C.; Sharma, D.K.; Patel, R. Development of a Cyber Physical Production System Framework for 3D Printing Analytics [Formula Presented]. Appl. Soft Comput. 2023, 146, 110719. [Google Scholar] [CrossRef]
- Ozdemir, B.; Hernández-del-Valle, M.; Gaunt, M.; Schenk, C.; Echevarría-Pastrana, L.; Fernández-Blázquez, J.P.; Wang, D.Y.; Haranczyk, M. Toward 3D Printability Prediction for Thermoplastic Polymer Nanocomposites: Insights from Extrusion Printing of PLA-Based Systems. Addit. Manuf. 2024, 95, 104533. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Ahmed, A.; Ali, T.; Qureshi, M.Z.; Islam, S.; Ahmed, H.; Ajwad, A.; Khan, M.A. Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models: Materials, Engineered Properties and Techniques for Additive Manufacturing. Sustain. Mater. Technol. 2025, 43, e01164. [Google Scholar] [CrossRef]
- Ege, D.; Arıcı, Ş. Investigation of Effect of Processing Parameters of 3D Printed NHS/EDC Crosslinked Carboxy Methyl Cellulose/Gelatin Hydrogels with Machine Learning Techniques. Mater. Res. Express 2024, 11, 045304. [Google Scholar] [CrossRef]
- Prada Parra, D.; Ferreira, G.R.B.; Díaz, J.G.; Gheorghe de Castro Ribeiro, M.; Braga, A.M.B. Supervised Machine Learning Models for Mechanical Properties Prediction in Additively Manufactured Composites. Appl. Sci. 2024, 14, 7009. [Google Scholar] [CrossRef]
- Sattari, K.; Wu, Y.; Chen, Z.; Mahjoubnia, A.; Su, C.; Lin, J. Physics-Constrained Multi-Objective Bayesian Optimization to Accelerate 3d Printing of Thermoplastics. Addit. Manuf. 2024, 86, 104204. [Google Scholar] [CrossRef]
- Luo, Q.; Shimanek, J.D.; Simpson, T.W.; Beese, A.M. An Image-Based Transfer Learning Approach for Using In Situ Processing Data to Predict Laser Powder Bed Fusion Additively Manufactured Ti-6Al-4V Mechanical Properties. 3D Print. Addit. Manuf. 2024, 12, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Riaz, R.D.; Malik, U.J.; Abbas, S.B.; Usman, M.; Shah, M.U.; Kim, I.H.; Hanif, A.; Faizan, M. Machine Learning-Based Predictive Model for Tensile and Flexural Strength of 3D-Printed Concrete. Materials 2023, 16, 4149. [Google Scholar] [CrossRef]
- Tan, C.; Li, Q.; Yao, X.; Chen, L.; Su, J.; Ng, F.L.; Liu, Y.; Yang, T.; Chew, Y.; Liu, C.T.; et al. Machine Learning Customized Novel Material for Energy-Efficient 4D Printing. Adv. Sci. 2023, 10, 2206607. [Google Scholar] [CrossRef]
- Ferdousi, S.; Advincula, R.; Sokolov, A.P.; Choi, W.; Jiang, Y. Investigation of 3D Printed Lightweight Hybrid Composites via Theoretical Modeling and Machine Learning. Compos. B Eng. 2023, 265, 110958. [Google Scholar] [CrossRef]
- Wang, C.; Chandra, S.; Huang, S.; Tor, S.B.; Tan, X. Unraveling Process-Microstructure-Property Correlations in Powder-Bed Fusion Additive Manufacturing through Information-Rich Surface Features with Deep Learning. J. Mater. Process. Technol. 2023, 311, 117804. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, S.; Jiang, B.; Li, K.; Dong, Z.; Pan, F. Modeling the Correlation between Texture Characteristics and Tensile Properties of AZ31 Magnesium Alloy Based on the Artificial Neural Networks. J. Mater. Res. Technol. 2023, 24, 5286–5297. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, C.N.; Zhang, X.; Goh, P.C.; Wei, J.; Hardacre, D.; Li, H. High Cycle Fatigue Life Prediction of Laser Additive Manufactured Stainless Steel: A Machine Learning Approach. Int. J. Fatigue 2019, 128, 105194. [Google Scholar] [CrossRef]
- Eshkabilov, S.; Ara, I.; Azarmi, F. A Comprehensive Investigation on Application of Machine Learning for Optimization of Process Parameters of Laser Powder Bed Fusion-Processed 316L Stainless Steel. Int. J. Adv. Manuf. Technol. 2022, 123, 2733–2756. [Google Scholar] [CrossRef]
- Neelam, R.; Kulkarni, S.A.; Bharath, H.S.; Powar, S.; Doddamani, M. Mechanical Response of Additively Manufactured Foam: A Machine Learning Approach. Results Eng. 2022, 16, 100801. [Google Scholar] [CrossRef]
- Alhaddad, W.; He, M.; Halabi, Y.; Yahya Mohammed Almajhali, K. Optimizing the Material and Printing Parameters of the Additively Manufactured Fiber-Reinforced Polymer Composites Using an Artificial Neural Network Model and Artificial Bee Colony Algorithm. Structures 2022, 46, 1781–1795. [Google Scholar] [CrossRef]
- Lu, Y.; Rai, R.; Nitin, N. Image-Based Assessment and Machine Learning-Enabled Prediction of Printability of Polysaccharides-Based Food Ink for 3D Printing. Food Res. Int. 2023, 173, 113384. [Google Scholar] [CrossRef]
- Sharma, A.; Bharti, P.S. Optimization of Resin Printing Parameters for Improved Surface Roughness Using Metaheuristic Algorithms: A Multifaceted Approach. J. Mater. Eng. Perform. 2024, 34, 8525–8539. [Google Scholar] [CrossRef]
- Shan, X.; Gao, C.; Rao, J.H.; Wu, M.; Yan, M.; Bi, Y. Experimental Study and Random Forest Machine Learning of Surface Roughness for a Typical Laser Powder Bed Fusion Al Alloy. Metals 2024, 14, 1148. [Google Scholar] [CrossRef]
- Muhammad, W.; Kang, J.; Ibragimova, O.; Inal, K. Experimental Investigation and Development of a Deep Learning Framework to Predict Process-Induced Surface Roughness in Additively Manufactured Aluminum Alloys. Weld. World 2023, 67, 897–921. [Google Scholar] [CrossRef]
- Xie, S.; He, Z.; Wang, C.; Liu, C.; Ke, X. A Generic Evolutionary Ensemble Learning Framework for Surface Roughness Prediction in Manufacturing. Int. J. Comput. Integr. Manuf. 2023, 36, 1572–1594. [Google Scholar] [CrossRef]
- Zhang, H.; Moon, S.K.; Ngo, T.H.; Tou, J.; Bin Mohamed Yusoff, M.A. Rapid Process Modeling of the Aerosol Jet Printing Based on Gaussian Process Regression with Latin Hypercube Sampling. Int. J. Precis. Eng. Manuf. 2020, 21, 127–136. [Google Scholar] [CrossRef]
- Alam, A.I.; Rahman, M.H.; Zia, A.; Lowry, N.; Chakraborty, P.; Hassan, M.R.; Khoda, B. In-Situ Particle Analysis with Heterogeneous Background: A Machine Learning Approach. Sci. Rep. 2024, 14, 10609. [Google Scholar] [CrossRef]
- Tiwari, T.; Nag, A.; Pramanik, A.; Dixit, A.R. A Comparative Study of Spark Assisted Bending Process Using Teaching–Learning Based Optimization, Desirability Approach and Genetic Algorithm. Appl. Soft Comput. 2022, 130, 109712. [Google Scholar] [CrossRef]
- Demisse, W.; Sanchez Guerrero, P.; Fulford, D.; Rice, L.; Klein, K.L.; Tyagi, P. Electroless Nickel Plating of Electropolished and Chempolished Additively Manufactured (AM) Steel Components in Various Surface Orientations. Int. J. Adv. Manuf. Technol. 2024, 134, 1533–1546. [Google Scholar] [CrossRef]
- Shaukat, U.; Rossegger, E.; Schlögl, S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers 2022, 14, 2449. [Google Scholar] [CrossRef]
- Malashin, I.; Masich, I.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A.; Martysyuk, D.; Galinovsky, A. Machine Learning in 3D and 4D Printing of Polymer Composites: A Review. Polymers 2024, 16, 3125. [Google Scholar] [CrossRef] [PubMed]
- Tarak, F.; Okoruwa, L.; Ozkan, B.; Sameni, F.; Schaefer, G.; Sabet, E. AI for AM: Machine Learning Approach to Design the Base Binder Formulation for Vat-Photopolymerisation 3D Printing of Zirconia Ceramics. Virtual Phys. Prototyp. 2025, 20, e2469822. [Google Scholar] [CrossRef]
- Dhingra, A.; Dhingra, S.; Singh, A.; Rathee, M.; Attri, V.; Kaushik, A.; Chhabra, D. Effect of Modeling-Optimization &Significant Process Parameters of Stereolithography (SLA) Printing on Part’s Quality. In Proceedings of the 2025 4th International Conference on Computational Modelling, Simulation and Optimization (ICCMSO), Singapore, 20–22 June 2025. [Google Scholar]
- Westphal, E.; Seitz, H. A Machine Learning Method for Defect Detection and Visualization in Selective Laser Sintering Based on Convolutional Neural Networks. Addit. Manuf. 2021, 41, 101965. [Google Scholar] [CrossRef]
- Pazireh, S.; Mirazimzadeh, S.E.; Urbanic, J. A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study. Metals 2025, 15, 966. [Google Scholar] [CrossRef]
- Chike, O.G.; Ahmad, N.B.; Al-Naib, U.M.B. Machine Learning Applications In Metal Additive Manufacturing: A Review. Am. J. Eng. Res. 2023, 12, 139–147. [Google Scholar]
- Zarin Era, I.; Farahani, M.A.; Wuest, T.; Liu, Z. Machine Learning in Directed Energy Deposition (DED) Additive Manufacturing: A State-of-the-Art Review. Manuf. Lett. 2023, 35, 689–700. [Google Scholar]
- Lin, W.-K.; Guo, L.J. 30 Years of Nanoimprint: Development, Momentum and Prospects. Opto-Electron. Technol. 2025, 1, 250001. [Google Scholar] [CrossRef]
- Tan, Y.; Lv, H.; Xu, J.; Zhang, A.; Song, Y.; Yu, J.; Chen, W.; Wan, Y.; Liu, Z.; Liu, Z.; et al. Three-Dimensional Isotropic Microfabrication in Glass Using Spatiotemporal Focusing of High-Repetition-Rate Femtosecond Laser Pulses. Opto-Electron. Adv. 2023, 6, 230066. [Google Scholar] [CrossRef]
- Mohsan, A.U.H.; Wei, D. Advancements in Additive Manufacturing of Tantalum via the Laser Powder Bed Fusion (PBF-LB/M): A Comprehensive Review. Materials 2023, 16, 6419. [Google Scholar] [CrossRef]
- Mohsan, A.U.H.; Zhang, M.; Wang, D.; Zhao, S.; Wang, Y.; Chen, C.; Zhang, J. State-of-the-Art Review on the Ultrasonic Vibration Assisted Laser Cladding (UVALC). J. Manuf. Process. 2023, 107, 422–446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktepe, E.; Ergün, U. Machine Learning Approaches for FDM-Based 3D Printing: A Literature Review. Appl. Sci. 2025, 15, 10001. https://doi.org/10.3390/app151810001
Aktepe E, Ergün U. Machine Learning Approaches for FDM-Based 3D Printing: A Literature Review. Applied Sciences. 2025; 15(18):10001. https://doi.org/10.3390/app151810001
Chicago/Turabian StyleAktepe, Elif, and Uçman Ergün. 2025. "Machine Learning Approaches for FDM-Based 3D Printing: A Literature Review" Applied Sciences 15, no. 18: 10001. https://doi.org/10.3390/app151810001
APA StyleAktepe, E., & Ergün, U. (2025). Machine Learning Approaches for FDM-Based 3D Printing: A Literature Review. Applied Sciences, 15(18), 10001. https://doi.org/10.3390/app151810001