Research on Cracking Mechanism and Crack Extension of Diversion Tunnel Lining Structure
Abstract
1. Introduction
2. Engineering Background
2.1. Tunnel Inspections
2.2. Characterization of Defects Based on the Gray Correlation Method
3. Research on Lining Cracking and Deformation Mechanism
3.1. Mechanical Characteristics of Non-Destructive Lining Structures
3.2. Mechanical Characteristics of Crack Lining Structures
3.3. Mechanical Characteristics of Different Structural Segments
4. Numerical Simulation and Analysis of Diversion Tunnels
4.1. Three-Dimensional Modeling
4.2. Simulation Results
4.2.1. Deformation Characteristics of Non-Destructive Lining Structures
4.2.2. Deformation Characteristics of Cracked Lining Structures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Zhong, D.H.; Ren, B.Y.; Tong, D.W.; Hong, K. Probabilistic Risk Analysis of Diversion Tunnel Construction Simulation. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 748–771. [Google Scholar] [CrossRef]
- McAdams, M.; Wang, J. Gunnison Tunnel: Engineering History of an Early American Reclamation Project. J. Perform. Constr. Facil. 2013, 27, 826–835. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.C.; Wang, H.R.; Xie, H.; Liu, Z.W. Reducing inconsistencies of FAHP in structural safety assessment of diversion tunnels. Appl. Soft Comput. 2023, 146, 14. [Google Scholar] [CrossRef]
- He, Y.P.; Sun, X.J.; Zhang, M.X. Investigation on the Deformation of Segment Linings in Cross-Fault Tunnel Considering the Creep Behavior of Surrounding Rock during Construction-Operation Period. Buildings 2022, 12, 1648. [Google Scholar] [CrossRef]
- Deng, J.; Xiao, M. Dynamic response analysis of concrete lining structure in high pressure diversion tunnel under seismic load. J. Vibroeng. 2016, 18, 1016–1030. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Y.; Feng, D. Application of Signal Imaging Analysis Technology in Prediction and Treatment of Water Inrush in Diversion Tunnel. Trait. Du Signal 2022, 39, 1729–1736. [Google Scholar] [CrossRef]
- Xia, M.P.; Li, H.B.; Jiang, N.; Chen, J.L.; Zhou, J.W. Risk Assessment and Mitigation Evaluation for Rockfall Hazards at the Diversion Tunnel Inlet Slope of Jinchuan Hydropower Station by Using Three-dimensional Terrestrial Scanning Technology. KSCE J. Civ. Eng. 2023, 27, 181–197. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.Z.; Qiao, W.G.; Fan, Z.W.; Zhang, S.; Chen, K.; Zhang, L. Water Seepage in Rocks at Micro-Scale. Water 2022, 14, 2827. [Google Scholar] [CrossRef]
- Hao, X.J.; Feng, X.T.; Yang, C.X.; Jiang, Q.; Li, S.J. Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel. Rock Mech. Rock Eng. 2016, 49, 1289–1312. [Google Scholar] [CrossRef]
- Dong, L.H.; Chen, J.D.; Song, D.Q.; Wang, C.W.; Liu, X.L.; Liu, M.X.; Wang, E.Z. Application of Long-Range Cross-Hole Acoustic Wave Detection Technology in Geotechnical Engineering Detection: Case Studies of Tunnel-Surrounding Rock, Foundation and Subgrade. Sustainability 2022, 14, 16947. [Google Scholar] [CrossRef]
- Lin, C.J.; Wang, X.T.; Li, Y.; Zhang, F.K.; Xu, Z.H.; Du, Y.H. Forward Modelling and GPR Imaging in Leakage Detection and Grouting Evaluation in Tunnel Lining. KSCE J. Civ. Eng. 2020, 24, 278–294. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D.L.; Zhang, S.L. Characteristics and treatment measures of lining damage: A case study on a mountain tunnel. Eng. Fail. Anal. 2021, 128, 13. [Google Scholar] [CrossRef]
- Lu, A.; Yan, P.; Lu, W.B.; Li, X.F.; Liu, X.; Luo, S.; Huang, S.L.; Grasselli, G. Crack propagation mechanism of smooth blasting holes for tunnel excavation under high in-situ stress. Eng. Fract. Mech. 2024, 304, 19. [Google Scholar] [CrossRef]
- Li, G.D.; Ren, Z.Y.; Yu, J.J. Mixed-Mode I-II Fracture Process Zone Characteristic of the Four-Point Shearing Concrete Beam. Materials 2020, 13, 3203. [Google Scholar] [CrossRef]
- Du, J. A Fracture Mechanics Study of Concrete Failure. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 1988. [Google Scholar]
- Li, Z.H.; Gong, Y.J.; Chen, F.J. Simulation of mixed mode I-II crack propagation in concrete using toughness-based crack initiation-propagation criterion with modified fracture energy. Theor. Appl. Fract. Mech. 2023, 123, 16. [Google Scholar] [CrossRef]
- Khan, G.; Ahmed, A.; Liu, Y.; Tafsirojjaman, T.; Ahmad, A.; Iqbal, M. Phase field model for mixed mode fracture in concrete. Eng. Fract. Mech. 2023, 289, 15. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Z.; Liu, S.; Li, L.F.; Zheng, Y.B.; Yuan, Y. Numerical simulation and analysis of crack disease in tunnel lining structure. Front. Mater. 2022, 9, 17. [Google Scholar] [CrossRef]
- Karami, M.; Kabiri-Samani, A.; Nazari-Sharabian, M.; Karakouzian, M. Investigating the effects of transient flow in concrete-lined pressure tunnels, and developing a new analytical formula for pressure wave velocity. Tunn. Undergr. Space Technol. 2019, 91, 13. [Google Scholar] [CrossRef]
- Wang, G.; Fang, Q.; Du, J.M.; Wang, J. Semi-analytical solution for internal forces of tunnel lining with multiple longitudinal cracks. J. Rock Mech. Geotech. Eng. 2023, 15, 2013–2024. [Google Scholar] [CrossRef]
- Chen, J.X.; Hu, T.T.; Hu, X.; Jia, K. Study on the influence of crack depth on the safety of tunnel lining structure. Tunn. Undergr. Space Technol. 2024, 143, 16. [Google Scholar] [CrossRef]
- Peng, Z.T.; Fang, Q.; Ai, Q.; Jiang, X.M.; Wang, H.; Huang, X.C.; Yuan, Y. Identifying the dominant influencing factors of secondary lining cracking risk in an operating mountain tunnel. Int. J. Struct. Integr. 2024, 15, 731–756. [Google Scholar] [CrossRef]
- Du, J.M.; Shu, Y.H.; Xu, G.W.; He, C.; Yao, C.F. Study on the influence of geo-stress field on the fracture pattern of secondary tunnel lining. Eng. Fail. Anal. 2023, 152, 28. [Google Scholar] [CrossRef]
- Xu, Z.L.; Chen, J.X.; Luo, Y.B.; Zhu, H.Y.; Liu, W.W.; Shi, Z.; Song, Z.G. Geomechanical model test for mechanical properties and cracking features of Large-section tunnel lining under periodic temperature. Tunn. Undergr. Space Technol. 2022, 123, 15. [Google Scholar] [CrossRef]
- Lu, S.; Sun, Z.Y.; Zhang, D.L.; Liu, C.; Wang, J.C.; Huangfu, N.Q. Numerical modelling and field observations on the failure mechanisms of deep tunnels in layered surrounding rock. Eng. Fail. Anal. 2023, 153, 27. [Google Scholar] [CrossRef]
- Lei, Y.M.; Yang, X.H.; Liu, Q.S.; Liu, H.; Chu, Z.F.; Wen, J.T.; Huang, Y.H. An enhanced polar-based GPGPU-parallelized contact detection algorithm for 3D FDEM and its application to cracking analysis of shield tunnel segmental linings. Tunn. Undergr. Space Technol. 2024, 148, 22. [Google Scholar] [CrossRef]
- Li, L.Y.; Liu, Z.; Du, X.L. Improvement of Analytic Hierarchy Process Based on Grey Correlation Model and Its Engineering Application. Asce-Asme J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2021, 7, 12. [Google Scholar] [CrossRef]
- Lang, L.; Zhu, Z.M.; Zhang, X.S.; Qiu, H.; Zhou, C.L. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts. Constr. Build. Mater. 2019, 199, 321–334. [Google Scholar] [CrossRef]
- Peng, J.X.; Hu, S.W.; Zhang, J.R.; Cai, C.S.; Li, L.Y. Influence of cracks on chloride diffusivity in concrete: A five-phase mesoscale model approach. Constr. Build. Mater. 2019, 197, 587–596. [Google Scholar] [CrossRef]
- Mittelstedt, C.; Becker, W. Efficient computation of order and mode of three-dimensional stress singularities in linear elasticity by the boundary finite element method. Int. J. Solids Struct. 2006, 43, 2868–2903. [Google Scholar] [CrossRef]
- Xie, H.P.; Lu, J.; Li, C.B.; Li, M.H.; Gao, M.Z. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. Int. J. Min. Sci. Technol. 2022, 32, 915–950. [Google Scholar] [CrossRef]
- Li, C.B.; Yang, D.C.; Xie, H.P.; Ren, L.; Wang, J. Size effect of fracture characteristics for anisotropic quasi-brittle geomaterials. Int. J. Min. Sci. Technol. 2023, 33, 201–213. [Google Scholar] [CrossRef]
- Zhang, N.; Zhu, X.J.; Ren, Y.F. Analysis and Study on Crack Characteristics of Highway Tunnel Lining. Civ. Eng. J. Tehran 2019, 5, 1119–1123. [Google Scholar] [CrossRef]
- Rodríguez, C.A.; Rodríguez-Pérez, Á.M.; López, R.; Hernández-Torres, J.A.; Caparrós-Mancera, J.J. A Finite Element Method Integrated with Terzaghi’s Principle to Estimate Settlement of a Building Due to Tunnel Construction. Buildings 2023, 13, 1343. [Google Scholar] [CrossRef]
Position | Vault Crack | Waist Crack | Soffit Leakage | Arch Girdlet Leakage |
---|---|---|---|---|
Upper flat section | 1 | 0.88 | 0.62 | 0.91 |
Inclined section | 0.99 | 0.88 | 0.62 | 0.91 |
Type | Unit Weight (kN·m−3) | Modulus of Elasticity (GPa) | Poisson’s Ratio | Angle of Internal Friction (°) | Cohesion (MPa) | Tensile Strength (MPa) | Breaking Energy (N/M) |
---|---|---|---|---|---|---|---|
Surrounding rock | 27.5 | 5.38 | 0.30 | 45 | 1.20 | ||
Lining | 25 | 30.0 | 0.25 | - | - | 1.43 | 114.35 |
Shotcrete | 25 | 31.5 | 0.20 | - | - | 1.57 | |
Anchor bolt | 78 | 200.0 | 0.20 | - | - |
Water Load in the Cave (MPa) | Analytical Solution for Cyclic Stress (MPa) | Numerical Solution for the Maximum Cyclic Stress (MPa) | Error Value (%) |
---|---|---|---|
0.45 | 1.13 | 1.29 | 14.15 |
0.8 | 2.00 | 2.28 | 14.00 |
1.2 | 2.75 | 3.15 | 14.55 |
1.35 | 3.37 | 3.84 | 13.95 |
(a) Comparison of 0.1 m crack results | |||
Water Load in the Cave (MPa) | Analytical Solution for Cyclic Stress (MPa) | Numerical Solution for the Maximum Cyclic Stress (MPa) | Error Value (%) |
0.45 | 1.17 | 1.31 | 11.97 |
0.8 | 2.08 | 2.35 | 12.98 |
1.2 | 2.86 | 3.28 | 14.68 |
1.35 | 3.51 | 4.03 | 14.81 |
(b) Comparison of 0.2 m crack results | |||
Water Load in the Cave (MPa) | Analytical Solution for Cyclic Stress (MPa) | Numerical Solution for the Maximum Cyclic Stress (MPa) | Error Value (%) |
0.45 | 1.22 | 1.39 | 13.93 |
0.8 | 2.17 | 2.44 | 12.44 |
1.2 | 2.99 | 3.42 | 14.38 |
1.35 | 3.66 | 4.19 | 14.48 |
(c) Comparison of 0.3 m crack results | |||
Water Load in the Cave (MPa) | Analytical Solution for Cyclic Stress (MPa) | Numerical Solution for the Maximum Cyclic Stress (MPa) | Error Value (%) |
0.45 | 1.29 | 1.45 | 12.40 |
0.8 | 2.29 | 2.57 | 12.27 |
1.2 | 3.14 | 3.57 | 13.69 |
1.35 | 3.86 | 4.38 | 13.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Wang, H.; Zou, X.; Chen, Y.; Liu, Z.; Yang, L.; Liu, K. Research on Cracking Mechanism and Crack Extension of Diversion Tunnel Lining Structure. Appl. Sci. 2025, 15, 9210. https://doi.org/10.3390/app15169210
Xie H, Wang H, Zou X, Chen Y, Liu Z, Yang L, Liu K. Research on Cracking Mechanism and Crack Extension of Diversion Tunnel Lining Structure. Applied Sciences. 2025; 15(16):9210. https://doi.org/10.3390/app15169210
Chicago/Turabian StyleXie, Hui, Haoran Wang, Xingtong Zou, Yongcan Chen, Zhaowei Liu, Liyi Yang, and Kang Liu. 2025. "Research on Cracking Mechanism and Crack Extension of Diversion Tunnel Lining Structure" Applied Sciences 15, no. 16: 9210. https://doi.org/10.3390/app15169210
APA StyleXie, H., Wang, H., Zou, X., Chen, Y., Liu, Z., Yang, L., & Liu, K. (2025). Research on Cracking Mechanism and Crack Extension of Diversion Tunnel Lining Structure. Applied Sciences, 15(16), 9210. https://doi.org/10.3390/app15169210