Uncertainty Analysis of Performance Parameters of a Hybrid Thermoelectric Generator Based on Sobol Sequence Sampling
Abstract
1. Introduction
2. General Structural Analysis Model of an HTEG
2.1. HTEG Model’s Structure
2.2. Theoretical Modeling
3. Random Uncertainty Analysis of the HTEG
3.1. Uncertainty Description of HTEG Parameters
3.2. Sobol-Sequence-Sampling Method
- Divide the mean value of each HTEG parameter into non-repetitive sub-intervals;
- Take a sample in each subinterval and define an matrix to store these samples;
- Rearrange each row of to simulate a random combination of the various HTEG parameters.
3.3. Analysis Process
4. Results and Discussion
4.1. Fluctuation Characterization of the Output Response Based on the HTEG Parameter
4.2. Influence of HTEG Working Parameters on the Output Response
4.3. Influence of the HTEG’s Material Parameters on the Output Response
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
Loop current | |||
Thermoelectric module | Current through each TE | ||
Hybrid thermoelectric generator | Thermal resistance between the TE and heat source | ||
Thermal resistance between the TE and cold source | |||
Total number of all TEs | the thermal resistance of a single TE | ||
Number of TEs in series | Temperature of the heat source | ||
Number of TEs in parallel | Temperature of the hot end of the TE | ||
Total resistance of all TEs | Temperature of the cold source | ||
Internal resistance of a single TE | Temperature of the cold end of the TE | ||
Contact resistance of a single TE | Heat absorbed from the heat source by the hot end of the TE | ||
Seebeck voltage generated by the TEs in row i | Heat released from the cold end of the TE to the cold source | ||
Seebeck coefficient of a single TE | Temperature difference between and | ||
Temperature difference between and | Output power | ||
Load resistance | Conversion efficiency | ||
Output voltage |
References
- Nwaiwu, U.; Leach, M.; Liu, L.; Seymour, V. Decentralized Geothermal Energy for Electricity Access: Exploring Knowledge and Social Acceptance in Ebonyi State, Nigeria. Sustainability 2025, 17, 5455. [Google Scholar] [CrossRef]
- Filho, J.J.d.S.; Gaspar, P.D.; Paço, A.d.; Marcelino, S.M. Governance-Centred Industrial Symbiosis for Circular Economy Transitions: A Rural Forest Biomass Hub Framework Proposal. Sustainability 2025, 17, 5659. [Google Scholar] [CrossRef]
- Abbas, S.R.; Mir, B.A.; Ryu, J.; Lee, S.W. Toward Sustainable Solar Energy: Predicting Recombination Losses in Perovskite Solar Cells with Deep Learning. Sustainability 2025, 17, 5287. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Kim, S.; Jeong, J.-W. Impact of electric circuit configurations on power generation in a photovoltaic and thermoelectric generator hybrid system. J. Build. Eng. 2024, 97, 110863. [Google Scholar] [CrossRef]
- Rjafallah, A.; Cotfas, D.T.; Cotfas, P.A. Investigation of temperature variations across the hot and cold sides of cascaded thermoelectric generator (CTEG) configurations in PV-CTEG hybrid systems. Case Stud. Therm. Eng. 2024, 61, 105070. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Joung, J.; Kim, S.; Park, J.; Jeong, J.-W. Design of a thermoelectric generator-assisted photovoltaic panel hybrid harvester using microencapsulate phase change material. J. Build. Eng. 2024, 87, 109110. [Google Scholar] [CrossRef]
- Song, D.; Li, L.; Huang, C.; Wang, K. Synergy between ionic thermoelectric conversion and nanofluidic reverse electrodialysis for high power density generation. Appl. Energy 2023, 334, 120681. [Google Scholar] [CrossRef]
- Liang, J.; Huang, M.; Zhang, X.; Wan, C. Structural design for wearable self-powered thermoelectric modules with efficient temperature difference utilization and high normalized maximum power density. Appl. Energy 2022, 327, 120067. [Google Scholar] [CrossRef]
- Ben, L. Structural Optimization and Thermal Stress Analysis of Thermoelectric Power Generation Module. Master’s Thesis, Dalian University of Technology, Dalian, China, 2020. [Google Scholar] [CrossRef]
- Ma, H.; Chen, L.; Liu, P.; Ge, Y.; Qi, C. Influence of Thomson effect and external heat transfer on the performance of a combined device of two-stage thermoelectric generator driving two-stage thermoelectric refrigerator. Energy Conserv. 2024, 43, 49–53. [Google Scholar]
- Khenfer, R.; Lekbir, A.; Rouabah, Z.; Meddad, M.; Benhadouga, S.; Zaoui, F.; Mekhilef, S. Experimental investigation of water-based photovoltaic/thermal-thermoelectric hybrid system: Energy, exergy, economic and environmental assessment. J. Power Sources 2024, 598, 234151. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, X.; Wang, Q.; Cui, J.; Jia, B.; Zhu, Y.; Feng, J.; Qiu, Y.; Gu, M.; Ge, Z.; et al. Realizing High-efficiency Power Generation in Low-cost PbS-based Thermoelectric Materials. Energy Environ. Sci. 2020, 13, 579–591. [Google Scholar] [CrossRef]
- Luo, X.; Guo, Q.; Tao, Z.; Liang, Y.; Liu, Z. Modified phase change materials used for thermal management of a novel solar thermoelectric generator. Energy Convers. Manag. 2020, 208, 112459. [Google Scholar] [CrossRef]
- Zhu, Y.; Newbrook, D.W.; Dai, P.; de Groot, C.H.K.; Huang, R. Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator. Appl. Energy 2022, 305, 117800. [Google Scholar] [CrossRef]
- Chen, W.-H.; Liao, C.-Y.; Wang, C.-C.; Hung, C.-I. Evaluation of power generation from thermoelectric cooler at normal and low-temperature cooling conditions. Energy Sustain. Dev. 2015, 25, 8–16. [Google Scholar] [CrossRef]
- Attar, A.; Lee, H.; Snyder, G.J. Optimum load resistance for a thermoelectric generator system. Energy Convers. Manag. 2020, 226, 113490. [Google Scholar] [CrossRef]
- He, J.; Zhou, H.; Zhang, Z. Optimization Design of Thermoelectric Generator Based on Response Surface Method. Mech. Des. Manuf. 2018, 5, 44–47. [Google Scholar] [CrossRef]
- Feng, Z.; Xiayu, X.; Lei, C.; Lu, W.; Zhongbing, L.; Ling, Z. Global moment-independent sensitivity analysis of single-stage thermoelectric refrigeration system. Int. J. Energy Res. 2019, 43, 9055–9064. [Google Scholar]
- Zhang, R.; Zhang, L.; Tang, J.; Shi, L. Research on Ecological Optimization of Thermoelectric Devices Performance. Phys. Eng. 2024, 34, 132–136. [Google Scholar] [CrossRef]
- Moshwan, R.; Shi, X.-L.; Zhang, M.; Yue, Y.; Liu, W.-D.; Li, M.; Wang, L.; Liang, D.; Chen, Z.-G. Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy. Appl. Energy 2025, 380, 125032. [Google Scholar] [CrossRef]
- Zhao, F.; Bao, H.; Zhang, F. Geometrically nonlinear deformation reconstruction of based on Euler–Bernoulli beam theory using a nonlinear iFEM algorithm. Thin-Walled Struct. 2023, 189, 110884. [Google Scholar] [CrossRef]
- Zhao, F.; Bao, H. Shape sensing approach for composite and sandwich beam with generic cross-sections: Application to fiber-reinforced polymer composite airfoil. Aerosp. Sci. Technol. 2023, 138, 108314. [Google Scholar] [CrossRef]
- Lu, C.; Wang, S.; Chen, C. Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator. Appl. Therm. Eng. 2015, 89, 270–279. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, X. Study of the thermal, electrical and thermoelectric properties of metallic nanofilms. Int. J. Heat Mass Transf. 2013, 58, 639–651. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, B.; Fu, Y. Design of high stable laser temperature controller for aerospace. Opt. Commun. Technol. 2015, 6, 45–47. [Google Scholar]
- Zhang, F.; Xu, X.; Wang, L.; Liu, Z.; Zhang, L. Global sensitivity analysis of two-stage thermoelectric refrigeration system based on response variance. Int. J. Energy Res. 2020, 44, 6623–6630. [Google Scholar] [CrossRef]
- Carpino, C.; Bruno, R.; Carpino, V.; Arcuri, N. Improve decision-making process and reduce risks in the energy retrofit of existing buildings through uncertainty and sensitivity analysis. Energy Sustain. Dev. 2022, 68, 289–307. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Hou, X.; Han, C.; Wu, M.; Liu, Z. Variance-based global sensitivity analysis of a hybrid thermoelectric generator fuzzy system. Appl. Energy 2022, 307, 118208. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Jing, S.; Lei, M. Monte Carlo analysis of failure consequences of natural gas pipeline leakage. J. Saf. Environ. 2021. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, X.; Cheng, L.; Tan, S.; Wang, W.; Wu, M. Mechanism reliability and sensitivity analysis method using truncated and correlated normal variables. Saf. Sci. 2020, 125, 104615. [Google Scholar] [CrossRef]
- Lee, P.; Lam, P.T.I.; Lee, W.L. Performance risks of lighting retrofit in Energy Performance Contracting projects. Energy Sustain. Dev. 2018, 45, 219–229. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, L.; Wu, M.; Xu, X.; Wang, P.; Liu, Z. Performance analysis of two-stage thermoelectric generator model based on Latin hypercube sampling. Energy Convers. Manag. 2020, 221, 113159. [Google Scholar] [CrossRef]
- Wang, L.; Luo, X. Adaptive Quasi-Monte Carlo method for nonlinear function error propagation and its application in geodetic measurement. Measurement 2021, 186, 110122. [Google Scholar] [CrossRef]
- Hou, T.; Nuyens, D.; Roels, S.; Janssen, H. Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications. Reliab. Eng. Syst. Saf. 2019, 191, 106549. [Google Scholar] [CrossRef]
- Shen, X.; Lin, M.; Zhu, Y.; Ha, H.K.; Fettweis, M.; Hou, T.; Toorman, E.A.; Maa, J.P.-Y.; Zhang, J. A quasi-Monte Carlo based flocculation model for fine-grained cohesive sediments in aquatic environments. Water Res. 2021, 194, 116953. [Google Scholar] [CrossRef]
- Krömer, P.; Platoš, J.; Snášel, V. Differential evolution for the optimization of low-discrepancy generalized Halton sequences. Swarm Evol. Comput. 2020, 54, 100649. [Google Scholar] [CrossRef]
- Farmer, J.; Roy, S. A quasi-Monte Carlo solver for thermal radiation in participating media. J. Quant. Spectrosc. Radiat. Transf. 2020, 242, 106753. [Google Scholar] [CrossRef]
- Sun, X.; Croke, B.; Roberts, S.; Jakeman, A. Comparing methods of randomizing Sobol’ sequences for improving uncertainty of metrics in variance-based global sensitivity estimation. Reliab. Eng. Syst. Saf. 2021, 210, 107499. [Google Scholar] [CrossRef]
- Navid, A.; Khalilarya, S.; Abbasi, M. Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process. Fuel 2018, 228, 349–367. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, S.; He, J.; Chen, D.; Wu, X. Research on a seismic connectivity reliability model of power systems based on the quasi-Monte Carlo method. Reliab. Eng. Syst. Saf. 2021, 215, 107888. [Google Scholar] [CrossRef]
- Hou, T.; Nuyens, D.; Roels, S.; Janssen, H. Quasi-Monte-Carlo-based probabilistic assessment of wall heat loss. Energy Procedia 2017, 132, 705–710. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, L.; Huang, J.D.; Wang Lili Liu, W.; Wu, R. Transient stability analysis of wind power and photovoltaic power systems based on Sobol sequence and hybrid copula. J. Sol. Energy 2015, 36, 1622–1631. [Google Scholar]
- Masahide, M.; Kazuhiro, Y.; Michio, M.; Masaru, O. 421 Thermoelectric Generator Utilizing Automobile Engine Exhaust Gas. Proc. Comput. Mech. Conf. 2001, 14, 445–446. [Google Scholar] [CrossRef]
- Luo, D.; Sun, Z.; Wang, R. Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery. Energy 2022, 238, 121816. [Google Scholar] [CrossRef]
- Zhu, Y. Introduction to Discrepancy of Point Sets; University of Science and Technology of China Press: Hefei, China, 2011; pp. 120–121. [Google Scholar]
Parameter Number | Parameter Name | Unit | Mean Value Interval | Typical Mean Value | Standard Deviation |
---|---|---|---|---|---|
K | [380, 420] | 400 | 8 | ||
K | [300, 346] | 323 | 6.46 | ||
Ω | [8, 24] | 16 | 0.32 | ||
V/K | [0.05291, 0.05403] | 0.05347 | 1.0694 × 10−3 | ||
Ω | [1.973, 2.219] | 2.096 | 0.04192 | ||
- | [5, 9] | 7 | 0.14 | ||
- | [5, 9] | 7 | 0.14 | ||
K/W | [0.008, 0.012] | 0.01 | 2 × 10−4 | ||
K/W | [0.0085, 0.0115] | 0.01 | 2 × 10−4 |
Parameter Number | Parameter Name | ||
---|---|---|---|
1.4859 | 0.6267 | ||
1.1322 | 0.5446 | ||
0.0859 | 0.0374 | ||
0.2531 | 0.1236 | ||
0.0279 | 0.0196 | ||
0.1803 | 0.0281 | ||
0.0142 | 0.0553 | ||
0.0165 | 0.0071 | ||
0.0167 | 0.0069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Tian, Y.; Liu, Q.; Gao, Y.; Wang, X.; Liu, Z. Uncertainty Analysis of Performance Parameters of a Hybrid Thermoelectric Generator Based on Sobol Sequence Sampling. Appl. Sci. 2025, 15, 9180. https://doi.org/10.3390/app15169180
Zhang F, Tian Y, Liu Q, Gao Y, Wang X, Liu Z. Uncertainty Analysis of Performance Parameters of a Hybrid Thermoelectric Generator Based on Sobol Sequence Sampling. Applied Sciences. 2025; 15(16):9180. https://doi.org/10.3390/app15169180
Chicago/Turabian StyleZhang, Feng, Yuxiang Tian, Qingyang Liu, Yang Gao, Xinhe Wang, and Zhongbing Liu. 2025. "Uncertainty Analysis of Performance Parameters of a Hybrid Thermoelectric Generator Based on Sobol Sequence Sampling" Applied Sciences 15, no. 16: 9180. https://doi.org/10.3390/app15169180
APA StyleZhang, F., Tian, Y., Liu, Q., Gao, Y., Wang, X., & Liu, Z. (2025). Uncertainty Analysis of Performance Parameters of a Hybrid Thermoelectric Generator Based on Sobol Sequence Sampling. Applied Sciences, 15(16), 9180. https://doi.org/10.3390/app15169180