Effects of Spectrally Varied Lighting Conditions on Cognitive Performance, User Preference, and Cardiac Effort in Indoor Lighting Environments During Daytime
Abstract
1. Introduction
- (1)
- The melanopically effective illuminance influences cognitive performance at the office workplace during the morning and afternoon.
- (2)
- The time of day influences the acute light effect.
2. Materials and Methods
Spectral Optimization of the Tested Lighting Conditions
- 180 lx (MEDI: 151 lx).
- 345 lx (MEDI: 288 lx).
- 770 lx (MEDI: 651 lx).
- 2000 lx (MEDI: 1637 lx).
3. Results
3.1. Study 1
3.2. Study 2
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCT | correlated color temperatures |
MEDI | melanopic-equivalent daylight illuminance |
PEP | pre-ejection period |
MCTQ | Munich ChronoType Questionnaire |
MSFSC | sleep-corrected mid-sleep on free days |
PSQI | Pittsburgh Sleep Quality Questionnaire |
BMI | body mass index |
FOV | field of view |
KSS | Karolinska Sleepiness Scale |
PVT | psychomotor vigilance task |
ECG | electrocardiogram |
ICG | impedance cardiography |
TLX | NASA Task Load Index |
CSD | consensus sleep diary |
References
- U.S. Environmental Protection Agency. An Office Building Occupant’s Guide to Indoor Air Quality. Available online: https://www.epa.gov/sites/default/files/2014-08/documents/occupants_guide.pdf (accessed on 13 November 2024).
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Blume, C.; Garbazza, C.; Spitschan, M. Effects of light on human circadian rhythms, sleep and mood. Somnologie 2019, 23, 147–156. [Google Scholar] [CrossRef]
- van Bommel, W.J.M. Non-visual biological effect of lighting and the practical meaning for lighting for work. Appl. Ergon. 2006, 37, 461–466. [Google Scholar] [CrossRef]
- Smolders, K.; de Kort, Y.; van den Berg, S.M. Daytime light exposure and feelings of vitality: Results of a field study during regular weekdays. J. Environ. Psychol. 2013, 36, 270–279. [Google Scholar] [CrossRef]
- Canazei, M.; Dehoff, P.; Staggl, S.; Pohl, W. Effects of dynamic ambient lighting on female permanent morning shift workers. Light. Res. Technol. 2014, 46, 140–156. [Google Scholar] [CrossRef]
- Canazei, M.; Pohl, W.; Bliem, H.R.; Weiss, E.M. Acute effects of different light spectra on simulated night-shift work without circadian alignment. Chronobiol. Int. 2017, 34, 303–317. [Google Scholar] [CrossRef]
- Brown, T.M.; Brainard, G.C.; Cajochen, C.; Czeisler, C.A.; Hanifin, J.P.; Lockley, S.W.; Lucas, R.J.; Münch, M.; O’Hagan, J.B.; Peirson, S.N.; et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 2022, 20, e3001571. [Google Scholar] [CrossRef]
- DIN/TS 5031-100:2021-11; Strahlungsphysik im optischen Bereich und Lichttechnik_-Teil_100: Über das Auge vermittelte, melanopische Wirkung des Lichts auf den Menschen_-Größen, Symbole und Wirkungsspektren. Beuth Verlag GmbH: Berlin, Germany, 2021.
- Thapan, K.; Arendt, J.; Skene, D.J. An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 2001, 535, 261–267. [Google Scholar] [CrossRef]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef]
- Figueiro, M.G.; Kalsher, M.; Steverson, B.C.; Heerwagen, J.; Kampschroer, K.; Rea, M.S. Circadian-effective light and its impact on alertness in office workers. Light. Res. Technol. 2019, 51, 171–183. [Google Scholar] [CrossRef]
- Rüger, M.; St Hilaire, M.A.; Brainard, G.C.; Khalsa, S.-B.S.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. Human phase response curve to a single 6.5 h pulse of short-wavelength light. J. Physiol. 2013, 591, 353–363. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Dijk, D.J.; Kronauer, R.; Brown, E.; Czeisler, C. Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. J. Physiol. 2000, 526 Pt 3, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J.P.; Lockley, S.W.; Cecil, K.; West, K.; Jablonski, M.; Warfield, B.; James, M.; Ayers, M.; Byrne, B.; Gerner, E.; et al. Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses. Physiol. Behav. 2018, 198, 57–66. [Google Scholar] [CrossRef]
- Gooley, J.J.; Rajaratnam, S.M.W.; Brainard, G.C.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci. Transl. Med. 2010, 2, 31ra33. [Google Scholar] [CrossRef]
- Rea, M.S.; Figueiro, M.G. Light as a circadian stimulus for architectural lighting. Light. Res. Technol. 2018, 50, 497–510. [Google Scholar] [CrossRef]
- Smolders, K.C.H.J.; de Kort, Y.A.W.; Cluitmans, P.J.M. A higher illuminance induces alertness even during office hours: Findings on subjective measures, task performance and heart rate measures. Physiol. Behav. 2012, 107, 7–16. [Google Scholar] [CrossRef]
- Souman, J.L.; Tinga, A.M.; Te Pas, S.F.; van Ee, R.; Vlaskamp, B.N.S. Acute alerting effects of light: A systematic literature review. Behav. Brain Res. 2018, 337, 228–239. [Google Scholar] [CrossRef]
- Lok, R.; Smolders, K.C.H.J.; Beersma, D.G.M.; de Kort, Y.A.W. Light, Alertness, and Alerting Effects of White Light: A Literature Overview. J. Biol. Rhythm. 2018, 33, 748730418796443. [Google Scholar] [CrossRef]
- Viola, A.U.; James, L.M.; Schlangen, L.J.M.; Dijk, D.-J. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand. J. Work Environ. Health 2008, 34, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Houser, K.W.; Esposito, T. Human-Centric Lighting: Foundational Considerations and a Five-Step Design Process. Front. Neurol. 2021, 12, 630553. [Google Scholar] [CrossRef]
- Lok, R.; Woelders, T.; Gordijn, M.C.M.; Hut, R.A.; Beersma, D.G.M. White Light During Daytime Does Not Improve Alertness in Well-rested Individuals. J. Biol. Rhythm. 2018, 33, 637–648. [Google Scholar] [CrossRef]
- Zeeuw, J.; Papakonstantinou, A.; Nowozin, C.; Stotz, S.; Zaleska, M.; Hädel, S.; Bes, F.; Münch, M.; Kunz, D. Living in Biological Darkness: Objective Sleepiness and the Pupillary Light Responses Are Affected by Different Metameric Lighting Conditions during Daytime. J. Biol. Rhythm. 2019, 34, 410–431. [Google Scholar] [CrossRef]
- Canazei, M.; Pohl, W.; Weninger, J.; Bliem, H.; Weiss, E.M.; Koch, C.; Berger, A.; Firulovic, B.; Marth, C. Effects of adjustable dynamic bedroom lighting in a maternity ward. J. Environ. Psychol. 2019, 62, 59–66. [Google Scholar] [CrossRef]
- Sahin, L.; Figueiro, M.G. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiol. Behav. 2013, 116–117, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sahin, L.; Wood, B.M.; Plitnick, B.; Figueiro, M.G. Daytime light exposure: Effects on biomarkers, measures of alertness, and performance. Behav. Brain Res. 2014, 274, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Rea, M.S.; Figueiro, M.G. Temporal dynamics of EEG activity during short- and long-wavelength light exposures in the early morning. BMC Res. Notes 2014, 7, 113. [Google Scholar] [CrossRef]
- Park, J.Y.; Ha, R.-Y.; Ryu, V.; Kim, E.; Jung, Y.-C. Effects of Color Temperature and Brightness on Electroencephalogram Alpha Activity in a Polychromatic Light-emitting Diode. Clin. Psychopharmacol. Neurosci. Off. Sci. J. Korean Coll. Neuropsychopharmacol. 2013, 11, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Lasauskaite, R.; Cajochen, C. Influence of lighting color temperature on effort-related cardiac response. Biol. Psychol. 2017, 132, 64–70. [Google Scholar] [CrossRef]
- Richter, M.; Friedrich, A.; Gendolla, G.H.E. Task difficulty effects on cardiac activity. Psychophysiology 2008, 45, 869–875. [Google Scholar] [CrossRef]
- Lasauskaite, R.; Hazelhoff, E.M.; Cajochen, C. Four minutes might not be enough for light colour temperature to affect sleepiness, mental effort, and light ratings. Light. Res. Technol. 2018, 21, 147715351879670. [Google Scholar] [CrossRef]
- Zauner, J.; Plischke, H.; Stijnen, H.; Schwarz, U.T.; Strasburger, H. Influence of common lighting conditions and time-of-day on the effort-related cardiac response. PLoS ONE 2020, 15, e0239553. [Google Scholar] [CrossRef]
- Cajochen, C.; Zeitzer, J.M.; Czeisler, C.A.; Dijk, D.-J. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 2000, 115, 75–83. [Google Scholar] [CrossRef]
- Smolders, K.C.H.J.; Peeters, S.T.; Vogels, I.M.L.C.; de Kort, Y.A.W. Investigation of Dose-Response Relationships for Effects of White Light Exposure on Correlates of Alertness and Executive Control during Regular Daytime Working Hours. J. Biol. Rhythm. 2018, 33, 649–661. [Google Scholar] [CrossRef]
- Roenneberg, T. What is chronotype? Sleep Biol. Rhythm. 2012, 10, 75–76. [Google Scholar] [CrossRef]
- ARRI. ARRI SkyPanel S60-C—DataSheet. Available online: https://www.arri.com/en/lighting/led/skypanel/s60-c (accessed on 19 March 2023).
- DIN EN 12464-1:2021-11; Licht und Beleuchtung—Beleuchtung von Arbeitsstätten- Teil_1: Arbeitsstätten in Innenräumen. Deutsche Fassung; Beuth Verlag GmbH: Berlin, Germany, 2021.
- Babilon, S.; Beck, S.; Kunkel, J.; Klabes, J.; Myland, P.; Benkner, S.; Khanh, T.Q. Measurement of Circadian Effectiveness in Lighting for Office Applications. Appl. Sci. 2021, 11, 6936. [Google Scholar] [CrossRef]
- Spitschan, M.; Nam, S.; Veitch, J.A. luox: Platform for Calculating Quantities Related to Light and Lighting [Software]. Available online: https://luox.app/ (accessed on 20 October 2024).
- Gesundheitliche Bewertung von Kohlendioxid in der Innenraumluft. Mitteilungen der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Innenraumlufthygiene-Kommission des Umweltbundesamtes und der Obersten Landesgesundheitsbehorden. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008, 51, 1358–1369. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Gillberg, M. Subjective and Objective Sleepiness in the Active Individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, S. High-Speed Scanning in Human Memory. Science 1966, 153, 652–654. [Google Scholar] [CrossRef]
- Reifman, J.; Kumar, K.; Khitrov, M.Y.; Liu, J.; Ramakrishnan, S. PC-PVT 2.0: An updated platform for psychomotor vigilance task testing, analysis, prediction, and visualization. J. Neurosci. Methods 2018, 304, 39–45. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- DGSM. Pittsburgh Schlafqualitätsindex (PSQI) Deutsch. Available online: http://www.dgsm.de (accessed on 5 June 2018).
- Nasa Task Load Index (TLX): Paper and Pencil Package v.1.0. Available online: https://humansystems.arc.nasa.gov/groups/tlx/tlxpaperpencil.php (accessed on 7 June 2018).
- Deutsche Lichttechnische Gesellschaft e.V. LiTG-Fragebogen zur Bewertung einer Lichtsituation. Available online: https://www.litg.de/Service/Links-und-Downloads.html (accessed on 7 June 2018).
- Carney, C.E.; Buysse, D.J.; Ancoli-Israel, S.; Edinger, J.D.; Krystal, A.D.; Lichstein, K.L.; Morin, C.M. The consensus sleep diary: Standardizing prospective sleep self-monitoring. Sleep 2012, 35, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Medis. Medizinische Messtechnik GmbH. CardioScreen. 2000. Available online: https://medis.company/cms/index.php?page=cardioscreeen_2000_de (accessed on 6 June 2018).
- Chellappa, S.L.; Steiner, R.; Blattner, P.; Oelhafen, P.; Gotz, T.; Cajochen, C. Non-visual effects of light on melatonin, alertness and cognitive performance: Can blue-enriched light keep us alert? PLoS ONE 2011, 6, e16429. [Google Scholar] [CrossRef] [PubMed]
- Boyce, P.R. The influence of illumination level on prolonged work performance. Light. Res. Technol. 1970, 2, 74–94. [Google Scholar] [CrossRef]
- Klir, S.; Benkner, S.; Khanh, T.Q. Dynamische Leuchtensteuerung als Funktion der Zeit. Licht Magazin, 2021. Available online: https://lichtnet.de/artikel/dynamische-leuchtensteuerung-als-funktion-der-zeit/ (accessed on 1 October 2024).
- Tops, M.; Tenner, A.; den Beld, V.G.; Begemann, S. The Effect of the Length of Continuous Presence on the Preferred Illuminance in Offices. 1998. Available online: https://research.tue.nl/en/publications/the-effect-of-the-length-of-continuous-presence-on-the-preferred- (accessed on 21 April 2023).
Baseline | 3000 K | 4500 K | 6000 K | |
---|---|---|---|---|
Illuminance (lx) | 445.4 | 819.4 | 445.8 | 452.0 |
Illuminance (lx) FOV CIE | 222.6 | 409.4 | 226.9 | 228.6 |
CCT (K) | 2998 | 3020 | 4502 | 6013 |
CIE 1931 xy chromaticity [x] | 0.438 | 0.436 | 0.358 | 0.321 |
CIE 1931 xy chromaticity [y] | 0.407 | 0.404 | 0.351 | 0.344 |
Ra | 95.6 | 95.5 | 83.9 | 94.6 |
R9 | 77.5 | 77.2 | 79.2 | 73.5 |
S-cone-opic EDI (lx) | 149.9 | 289.7 | 316.5 | 399.4 |
M-cone-opic EDI (lx) | 362.5 | 668.4 | 417.7 | 440.4 |
L-cone-opic EDI (lx) | 450.4 | 828.8 | 453.6 | 446.5 |
Rhodopic EDI (lx) | 258.0 | 479.1 | 401.9 | 418.3 |
Melanopic EDI (lx) | 217.5 | 406.2 | 404.2 | 399.4 |
Melanopic EDI (lx) (FOV CIE) | 110.8 | 206.1 | 208.8 | 203.1 |
CLA2018 | 436.7 | 819.4 | 509.3 | 541.1 |
CS2018 | 0.39 | 0.50 | 0.42 | 0.43 |
CLA2021 | 348.8 | 659.7 | 552.9 | 545.1 |
CS2021 (t = 1; f = 1) | 0.35 | 0.46 | 0.43 | 0.43 |
180 lx | 350 lx | 770 lx | 2000 lx | |
---|---|---|---|---|
Illuminance (lx) | 177.1 | 339.0 | 763.3 | 1962.3 |
Illuminance (lx) FOV CIE | 91.1 | 175.7 | 386.9 | 1005.9 |
CCT (K) | 4480 | 4492 | 4536 | 4441 |
CIE 1931 xy chromaticity [x] | 0.359 | 0.359 | 0.357 | 0.361 |
CIE 1931 xy chromaticity [y] | 0.352 | 0.353 | 0.350 | 0.355 |
Ra | 89.1 | 89.6 | 89.9 | 90.5 |
R9 | 93.5 | 94.4 | 94.1 | 94.3 |
S-cone-opic EDI (lx) | 127.0 | 241.0 | 560.5 | 1371.9 |
M-cone-opic EDI (lx) | 164.2 | 314.4 | 708.3 | 1813.0 |
L-cone-opic EDI (lx) | 179.4 | 343.0 | 772.6 | 1984.1 |
Rhodopic EDI (lx) | 153.2 | 292.6 | 660.5 | 1670.6 |
Melanopic EDI (lx) | 151.3 | 288.4 | 651.6 | 1637.4 |
Melanopic EDI (lx) (FOV CIE) | 82.8 | 160.3 | 353.5 | 891.7 |
CLA2018 | 186.7 | 357.3 | 882.7 | 2324.8 |
CS2018 | 0.23 | 0.35 | 0.51 | 0.62 |
CLA2021 | 207.0 | 395.7 | 942.6 | 2468.5 |
CS2021 (t = 1; f = 1) | 0.25 | 0.37 | 0.52 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, S.; Khanh, T.Q. Effects of Spectrally Varied Lighting Conditions on Cognitive Performance, User Preference, and Cardiac Effort in Indoor Lighting Environments During Daytime. Appl. Sci. 2025, 15, 9163. https://doi.org/10.3390/app15169163
Beck S, Khanh TQ. Effects of Spectrally Varied Lighting Conditions on Cognitive Performance, User Preference, and Cardiac Effort in Indoor Lighting Environments During Daytime. Applied Sciences. 2025; 15(16):9163. https://doi.org/10.3390/app15169163
Chicago/Turabian StyleBeck, Sebastian, and Tran Quoc Khanh. 2025. "Effects of Spectrally Varied Lighting Conditions on Cognitive Performance, User Preference, and Cardiac Effort in Indoor Lighting Environments During Daytime" Applied Sciences 15, no. 16: 9163. https://doi.org/10.3390/app15169163
APA StyleBeck, S., & Khanh, T. Q. (2025). Effects of Spectrally Varied Lighting Conditions on Cognitive Performance, User Preference, and Cardiac Effort in Indoor Lighting Environments During Daytime. Applied Sciences, 15(16), 9163. https://doi.org/10.3390/app15169163