Reliability Assessment of Hybrid Cable Laying Configurations in Urban Dense Cable Channels Based on Modified Weibull Distribution
Abstract
1. Introduction
2. Reliability Assessment Model of Urban Dense Cable Channels
2.1. Weibull Distribution Function
2.2. Weibull Proportional Hazards Model with Covariates
3. Update the Prediction Model Based on Bayesian Estimation
3.1. Bayesian Parameter Estimation
3.2. Dense Cable Channel Prior Distribution Selection
3.3. Update Prior Distributions with Bayesian Models
3.4. Reliability Index Assessment of Urban Dense Cable Channels
4. Case Study
4.1. Prior Distribution Parameter Selection
4.2. Selection of Cable Channel Maintenance Data
4.3. Update Prior Distributions with Maintenance Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Lin, Z.; Han, J.; Yang, W.; Fang, L.; Zhou, Z. Investigation on Cable Temperature in Wet Tunnel Considering Coupled Heat and Moisture Transfer. IEEE Trans. Power Deliv. 2023, 18, 588–598. [Google Scholar] [CrossRef]
- Gao, D.; Ma, G.; Qin, W.; Gao, T.; Wang, Y.; Wang, Y. A Relative Humidity Sensor Based on Non-Adiabatic Tapered Optical Fiber for Remote Measurement in Power Cable Tunnel. IEEE Trans. Instrum. Meas. 2022, 71, 1–8. [Google Scholar] [CrossRef]
- Tanaka, Y.; Baba, Y. Development of a Method for Calculating the Capacitance of Cables Installed in a Rectangular Tunnel Taking Account of the Permittivity of the Outer Sheath. IEEE Trans. Electromagn. Compat. 2023, 65, 1422–1431. [Google Scholar] [CrossRef]
- Fu, H.; Qiu, L.; Ai, Y.; Xie, C.; Yan, Y. Analysis of Early Warning Indicators for High Voltage Power Cable Tunnel Fire Based on Experimental Data. In Proceedings of the 2023 3rd International Conference on Electrical Engineering and Control Science, Hangzhou, China, 29–31 December 2023; pp. 1422–1431. [Google Scholar]
- Liu, Z.; Liu, Y.; Zhu, G.; Pan, S. Incipient Fault Detection for Medium Voltage Cables: Considering the Impact of Solid Insulation Degradation on Fault Transient Behavior. IEEE Trans. Instrum. Meas. 2025, 74, 1–11. [Google Scholar] [CrossRef]
- Liu, C.; Hou, Y.; Duan, Z.; Shang, R.; Wang, K.; Chen, D. Underground Power Cable Fault Detection and Localization Based on the Spectrum of Propagation Functions. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
- Ali, K.; Aboushady, A.; Bradley, S.; Farrag, M. An Industry Practice Guide for Underground Cable Fault-Finding in the Low Voltage Distribution Network. IEEE Access 2022, 10, 69472–69489. [Google Scholar] [CrossRef]
- Diban, B.; Mazzanti, G.; Seri, P. Life-Based Geometric Design of HVDC Cables—Part I: Parametric Analysis. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 973–980. [Google Scholar] [CrossRef]
- Li, F. Analysis and Discussion of DCS Cable Overcapacitance Issues in CPR1000 Nuclear Power Units. Technol. Bus. 2022, 114, 125–126. [Google Scholar]
- Guo, W.; Ren, Z.; Qi, W.; Guo, X.; Wang, M.; Dai, R. Research on the Impact of Mixed Laying of 10kV and 110kV Cable Lines on Circulating Current. Electron. Meas. Technol. 2019, 42, 135–140. [Google Scholar]
- Wang, H.; Sun, M.; Zhao, K.; Wang, X.; Wang, W.; Li, C. High Voltage FDS Diagnosis and Evaluation Method for Cable Insulation Aging. Proc. CSEE 2023, 43, 3630–3642. [Google Scholar]
- Zhang, Y.; Jiang, F.; Yu, X.; Zhou, K.; Zhang, W.; Fu, Q.; Hao, J. Assessment of Thermal Aging Degree of 10kV Cross-Linked Polyethylene Cable Based on Depolarization Current. IEEE Access 2021, 9, 111020–111029. [Google Scholar] [CrossRef]
- Luo, Z.; Ye, G.; Zhou, L.; Li, T.; Chen, N.; Zhang, Z. Insulation Status Assessment of XLPE Distribution Cable Based on BO-LightGBM Algorithm. Insul. Mater. 2025, 58, 131–140. [Google Scholar]
- Chang, C.; Chang, H. Learning Entirely Unknown Classes in Time-Series Data Using Convolutional Neural Networks for Insulation Status Assessment of Partial Discharges in Power Cable Joints. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 2854–2861. [Google Scholar] [CrossRef]
- Fang, Y. Research on Status Evaluation and Prediction Method of XLPE Cables in Rural Distribution Network Based on Data-Driven. Master’s Thesis, Southwest University, Chongqing, China, 2023; pp. 7–9. [Google Scholar]
- Yang, F.; Wang, H.; Fang, J.; He, J.; Huang, B.; Wang, L. Cable Risk Assessment and Repair Decision Based on K⁃means Clusteringand Random Forest. J. Nanjing Univ. Aeronaut. Astronaut. 2024, 56, 892–899. [Google Scholar]
- Yuan, J. Risk Assessment Method for Maintenance and Replacement of High Voltage Cables Based on Statistical Model. Master’s Thesis, Wuhan University, Wuhan, China, 2021; pp. 25–33. [Google Scholar]
- Zhang, X.; Gockenbach, E. Assessment of the Actual Condition of the Electrical Components in Medium-Voltage Networks. IEEE Trans. Reliab. 2006, 55, 361–368. [Google Scholar] [CrossRef]
- Chesnokov, E.; Korovkin, N.; Greshnyakov, G.; Dubitsky, S. Electric Strength Test of a New and Aged XPLE-Insulated Power Cable: A Weibull Statistic Approach. In Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, Saint Petersburg, Russian, 25–28 January 2022; pp. 1163–1166. [Google Scholar]
- Tang, Z.; Zhou, W.; Zhao, J.; Wang, D.; Zhang, L.; Liu, H. Comparison of the Weibull and the Crow-AMSAA Model in Pre-diction of Early Cable Joint Failures. IEEE Trans. Power Deliv. 2015, 30, 2410–2418. [Google Scholar] [CrossRef]
- Xia, G.; Xie, X.; Wan, J.; Zhao, W. Usability Evaluation and Maintenance Decision of the Optical Cable Based on Weibull Proportional Hazard Model. In Proceedings of the 2020 International Conference on Virtual Reality and Intelligent Systems, Zhangjiajie, China, 18–19 July 2020; pp. 1159–1162. [Google Scholar]
- Su, G.; Liu, H.; Zhang, L.; Hang, M.; Zhang, S.; Li, L. Research and Application of the New Strategy of Proactive Cable Maintenance Based on Fuzzy Evaluation. Power Syst. Clean Energy 2024, 49, 54–63. [Google Scholar]
- Mathew, M.; Chakrabortty, R.; Ryan, M. Selection of an Optimal Maintenance Strategy Under Uncertain Conditions: An Interval Type-2 Fuzzy AHP-TOPSIS Method. IEEE Trans. Eng. Manag. 2022, 69, 1121–1134. [Google Scholar] [CrossRef]
- Gao, R.; Xu, X.; Chan, L.; Sun, Y.; Li, M.; Hou, C. Research on Risk Assessment Method for Power Grid Data Security Based on AHP. In Proceedings of the 2025 IEEE 8th Information Technology and Mechatronics Engineering Conference, Chongqing, China, 14–16 March 2025; pp. 799–803. [Google Scholar]
- Liu, T.; Liu, Y.; Liu, J.; Wang, L.; Xu, L.; Qiu, G. A Bayesian Learning Based Scheme for Online Dynamic Security Assessment and Preventive Control. IEEE Trans. Power Syst. 2020, 35, 4088–4099. [Google Scholar] [CrossRef]
- Liu, H.; Liao, Y.; Wei, Y.; Yuan, J.; Xu, X. Analysis Method for High-voltage Cable Reliability Combining Bayes Inference and Weibull Proportion Hazard Model. High Volt. Eng. 2021, 47, 546–554. [Google Scholar]
Operating Conditions | Service Life T0.85 |
---|---|
No overcrowding, normal temperature, segregated installation | 65–70 |
No overcrowding, cable overheating, segregated installation | 40–50 |
100% overcrowding, normal temperature, segregated installation | 25–30 |
100% overcrowding, normal temperature, mixed installation | 15–20 |
100% overcrowding, cable overheating, mixed installation | 10–15 |
Channel ID | Operating Days | Risk Value | Overcrowding Rate/% | Temperature Value | Mixed Value |
---|---|---|---|---|---|
1 | 4577 | 1 | 88.00 | 1 | 1 |
2 | 4892 | 1 | 100.00 | 0 | 1 |
3 | 5420 | 1 | 100.00 | 1 | 0 |
4 | 6981 | 0 | 16.67 | 0 | 0 |
5 | 7200 | 0 | 33.33 | 0 | 1 |
6 | 7396 | 0 | 40.00 | 1 | 0 |
7 | 7452 | 0 | 25.00 | 1 | 0 |
8 | 7863 | 0 | 10.00 | 0 | 0 |
9 | 7944 | 0 | 40.00 | 0 | 1 |
10 | 8307 | 0 | 25.00 | 0 | 1 |
11 | 8340 | 0 | 40.00 | 1 | 1 |
12 | 8588 | 0 | 33.00 | 1 | 1 |
13 | 8803 | 0 | 40.00 | 0 | 0 |
14 | 8896 | 0 | 33.30 | 1 | 0 |
15 | 9124 | 0 | 13.30 | 1 | 0 |
Param. | Mean | SD | Median | LCL (5%) | UCL (5%) | Accept. Rate Mean | |
---|---|---|---|---|---|---|---|
β | 4.07 | 1.40 | 3.90 | 2.03 | 6.42 | 19.48% | 1.0205 |
γ0 | −43.95 | 12.66 | −42.43 | −67.63 | −25.24 | 31.76% | 1.0221 |
γ1 | 7.99 | 2.30 | 7.86 | 4.42 | 11.96 | 20.53% | 1.0074 |
γ2 | 0.91 | 1.64 | 0.88 | −1.70 | 3.67 | 28.76% | 1.0003 |
γ3 | 1.41 | 1.47 | 1.33 | −1.91 | 2.91 | 27.18% | 1.0006 |
Performance Indicators | Proposed Model | Weibull-MLE | Cox PH |
---|---|---|---|
C-index | 0.882 | 0.815 | 0.793 |
AUC | 0.865 | 0.798 | 0.771 |
Channel ID | Operating Days | Risk Value | Overcrowding Rate/% | Temperature Value | Mixed Value |
---|---|---|---|---|---|
1 | 5047 | 0 | 40 | 1 | 0 |
2 | 7356 | 1 | 66.7 | 1 | 1 |
O&M Level | Reliability Metric Threshold | O&M Action |
---|---|---|
Planned Replacement | T0.85 < 15 years | Execute standard inspection cycles; add the cable to the replacement list. |
Early Warning | R(t) < 0.85 | Increase inspection frequency; implement derating for the cable. |
Critical Risk | R(1|s) < 0.75 | Immediately decommission the relevant cable and perform overhaul/replacement. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Y.; Chen, D.; Zhang, Z.; Xu, X.; Zheng, S.; Wu, Z. Reliability Assessment of Hybrid Cable Laying Configurations in Urban Dense Cable Channels Based on Modified Weibull Distribution. Appl. Sci. 2025, 15, 9124. https://doi.org/10.3390/app15169124
Nie Y, Chen D, Zhang Z, Xu X, Zheng S, Wu Z. Reliability Assessment of Hybrid Cable Laying Configurations in Urban Dense Cable Channels Based on Modified Weibull Distribution. Applied Sciences. 2025; 15(16):9124. https://doi.org/10.3390/app15169124
Chicago/Turabian StyleNie, Yongjie, Daoyuan Chen, Zetong Zhang, Xiaowei Xu, Shuai Zheng, and Zhensheng Wu. 2025. "Reliability Assessment of Hybrid Cable Laying Configurations in Urban Dense Cable Channels Based on Modified Weibull Distribution" Applied Sciences 15, no. 16: 9124. https://doi.org/10.3390/app15169124
APA StyleNie, Y., Chen, D., Zhang, Z., Xu, X., Zheng, S., & Wu, Z. (2025). Reliability Assessment of Hybrid Cable Laying Configurations in Urban Dense Cable Channels Based on Modified Weibull Distribution. Applied Sciences, 15(16), 9124. https://doi.org/10.3390/app15169124