Thermodynamic Properties of Liquid Fe-Mg Alloys Under Outer-Core Conditions Using First-Principles Molecular Dynamics
Abstract
1. Introduction
2. Methods
2.1. Computational Method
2.2. Pressure Correction
2.3. Equation of State of Liquid Fe-Mg Alloy
3. Results
3.1. Thermodynamic Properties of Liquid Fe with Pressure Correction
3.2. The Effects of Mg on Liquid Fe-Mg Alloys
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubie, D.C.; Melosh, H.J.; Reid, J.E.; Liebske, C.; Righter, K. Mechanisms of Metal–Silicate Equilibration in the Terrestrial Magma Ocean. Earth Planet. Sci. Lett. 2003, 205, 239–255. [Google Scholar] [CrossRef]
- Birch, F. Elasticity and Constitution of the Earth’s Interior. J. Geophys. Res. 1952, 57, 227–286. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Birch, F. Density and Composition of Mantle and Core. J. Geophys. Res. (1896–1977) 1964, 69, 4377–4388. [Google Scholar] [CrossRef]
- Badro, J.; Côté, A.S.; Brodholt, J.P. A Seismologically Consistent Compositional Model of Earth’s Core. Proc. Natl. Acad. Sci. USA 2014, 111, 7542–7545. [Google Scholar] [CrossRef]
- Umemoto, K.; Hirose, K. Chemical Compositions of the Outer Core Examined by First Principles Calculations. Earth Planet. Sci. Lett. 2020, 531, 116009. [Google Scholar] [CrossRef]
- Pease, A.; Liu, J.; Lv, M.; Piper, J.; Kono, Y.; Dorfman, S.M. Liquid Structure of Iron and Iron–Nitrogen–Carbon Alloys Within the Cores of Small Terrestrial Bodies. JGR Planets 2025, 130, e2024JE008599. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Liu, J.; Zhang, Y.; Mitchell, R.N.; Zhang, Z. Oxygen Driving Hydrogen Into the Inner Core: Implications for the Earth’s Core Composition. Geophys. Res. Lett. 2025, 52, e2024GL110315. [Google Scholar] [CrossRef]
- Satyal, S.; Wang, J. Structure and Non-Ideal Mixing of Fe-Ni-S Liquid at High Temperature and Pressure and Its Implication for the Earth’s Outer Core Composition. JGR Solid Earth 2024, 129, e2024JB029436. [Google Scholar] [CrossRef]
- O’Rourke, J.G.; Stevenson, D.J. Powering Earth’s Dynamo with Magnesium Precipitation from the Core. Nature 2016, 529, 387–389. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Yin, Q.-Z.; Zhao, Y.; Zhang, Z. Magnesium Partitioning between Silicate Melt and Liquid Iron Using First-Principles Molecular Dynamics: Implications for the Early Thermal History of the Earth’s Core. Earth Planet. Sci. Lett. 2020, 531, 115934. [Google Scholar] [CrossRef]
- Murakami, M.; Khan, A.; Sossi, P.A.; Ballmer, M.D.; Saha, P. The Composition of Earth’s Lower Mantle. Annu. Rev. Earth Planet. Sci. 2024, 52, 605–638. [Google Scholar] [CrossRef]
- Li, Y.; Vočadlo, L.; Alfè, D.; Brodholt, J. Mg Partitioning between Solid and Liquid Iron under the Earth’s Core Conditions. Phys. Earth Planet. Inter. 2018, 274, 218–221. [Google Scholar] [CrossRef]
- Pu, C.; Gao, X.; Wu, Z.; Du, Z.; Jing, Z. Metal-Silicate Partitioning of Si, O, and Mg at High Pressures and High Temperatures: Implications to the Compositional Evolution of Core-Forming Metallic Melts. Geochem. Geophys. Geosyst. 2025, 26, e2024GC011940. [Google Scholar] [CrossRef]
- Takafuji, N.; Hirose, K.; Mitome, M.; Bando, Y. Solubilities of O and Si in Liquid Iron in Equilibrium with (Mg,Fe)SiO3 Perovskite and the Light Elements in the Core. Geophys. Res. Lett. 2005, 32, 2005GL022773. [Google Scholar] [CrossRef]
- Deng, J.; Miyazaki, Y.; Lee, K.K.M. Implications for the Melting Phase Relations in the MgO-FeO System at Core-Mantle Boundary Conditions. JGR Solid Earth 2019, 124, 1294–1304. [Google Scholar] [CrossRef]
- Kádas, K.; Vitos, L.; Ahuja, R. Elastic Properties of Iron-Rich Hcp Fe–Mg Alloys up to Earth’s Core Pressures. Earth Planet. Sci. Lett. 2008, 271, 221–225. [Google Scholar] [CrossRef]
- Kádas, K.; Vitos, L.; Johansson, B.; Ahuja, R. Stability of Body-Centered Cubic Iron–Magnesium Alloys in the Earth’s Inner Core. Proc. Natl. Acad. Sci. USA 2009, 106, 15560–15562. [Google Scholar] [CrossRef]
- Rahm, M.; Cammi, R.; Ashcroft, N.W.; Hoffmann, R. Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression. J. Am. Chem. Soc. 2019, 141, 10253–10271. [Google Scholar] [CrossRef]
- Wahl, S.M.; Militzer, B. High-Temperature Miscibility of Iron and Rock during Terrestrial Planet Formation. Earth Planet. Sci. Lett. 2015, 410, 25–33. [Google Scholar] [CrossRef]
- Gao, P.; Su, C.; Shao, S.; Wang, S.; Liu, P.; Liu, S.; Lv, J. Iron–Magnesium Compounds under High Pressure. New J. Chem. 2019, 43, 17403–17407. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, Y.; Wang, R.; Zheng, F.; Zhang, F.; Wu, S.; Wang, C.-Z.; Wentzcovitch, R.M.; Ho, K.-M. Structural Prediction of Fe-Mg-O Compounds at Super-Earth’s Pressures. Phys. Rev. Mater. 2023, 7, 113602. [Google Scholar] [CrossRef]
- Gomi, H.; Ohta, K.; Hirose, K.; Labrosse, S.; Caracas, R.; Verstraete, M.J.; Hernlund, J.W. The High Conductivity of Iron and Thermal Evolution of the Earth’s Core. Phys. Earth Planet. Inter. 2013, 224, 88–103. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Nosé, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255–268. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Mermin, N.D. Thermal Properties of the Inhomogeneous Electron Gas. Phys. Rev. 1965, 137, A1441–A1443. [Google Scholar] [CrossRef]
- Xu, H.; Xie, M.; Fu, J. T-P-V Data of Liquid Fe-Mg Alloys under the Outer Core Conditions by FP-MD Simulations. 2025. [Google Scholar] [CrossRef]
- Kuwayama, Y.; Morard, G.; Nakajima, Y.; Hirose, K.; Baron, A.Q.R.; Kawaguchi, S.I.; Tsuchiya, T.; Ishikawa, D.; Hirao, N.; Ohishi, Y. Equation of State of Liquid Iron under Extreme Conditions. Phys. Rev. Lett. 2020, 124, 165701. [Google Scholar] [CrossRef]
- French, M.; Mattsson, T.R. Thermodynamically Constrained Correction to Ab Initio Equations of State. J. Appl. Phys. 2014, 116, 013510. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. 1944, 30, 244–247. [Google Scholar] [CrossRef]
- Birch, F. Finite Strain Isotherm and Velocities for Single-crystal and Polycrystalline NaCl at High Pressures and 300°K. J. Geophys. Res. 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Ichikawa, H.; Tsuchiya, T.; Tange, Y. The P-V-T Equation of State and Thermodynamic Properties of Liquid Iron. JGR Solid Earth 2014, 119, 240–252. [Google Scholar] [CrossRef]
- Xie, M.; Fu, J.; Belonoshko, A.B. Equation of State and Thermodynamic Properties of Liquid Fe-O in the Earth’s Outer Core. Geosci. Front. 2024, 16, 101847. [Google Scholar] [CrossRef]
- Brown, J.M.; McQueen, R.G. Phase Transitions, Grüneisen Parameter, and Elasticity for Shocked Iron between 77 GPa and 400 GPa. J. Geophys. Res. 1986, 91, 7485–7494. [Google Scholar] [CrossRef]
- Alfè, D.; Kresse, G.; Gillan, M.J. Structure and Dynamics of Liquid Iron under Earth’s Core Conditions. Phys. Rev. B 2000, 61, 132–142. [Google Scholar] [CrossRef]
- Komabayashi, T.; Fei, Y. Internally Consistent Thermodynamic Database for Iron to the Earth’s Core Conditions. J. Geophys. Res. 2010, 115, 2009JB006442. [Google Scholar] [CrossRef]
- Bajgain, S.K.; Mookherjee, M.; Dasgupta, R.; Ghosh, D.B.; Karki, B.B. Nitrogen Content in the Earth’s Outer Core. Geophys. Res. Lett. 2019, 46, 89–98. [Google Scholar] [CrossRef]
- Anderson, W.W.; Ahrens, T.J. An Equation of State for Liquid Iron and Implications for the Earth’s Core. J. Geophys. Res. 1994, 99, 4273–4284. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Lukinov, T.; Fu, J.; Zhao, J.; Davis, S.; Simak, S.I. Stabilization of Body-Centred Cubic Iron under Inner-Core Conditions. Nat. Geosci. 2017, 10, 312–316. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Fu, J.; Bryk, T.; Simak, S.I.; Mattesini, M. Low Viscosity of the Earth’s Inner Core. Nat. Commun. 2019, 10, 2483. [Google Scholar] [CrossRef]
- Alfè, D. Temperature of the Inner-Core Boundary of the Earth: Melting of Iron at High Pressure from First-Principles Coexistence Simulations. Phys. Rev. B 2009, 79, 060101. [Google Scholar] [CrossRef]
- Anzellini, S.; Dewaele, A.; Mezouar, M.; Loubeyre, P.; Morard, G. Melting of Iron at Earth’s Inner Core Boundary Based on Fast X-Ray Diffraction. Science 2013, 340, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Laio, A.; Bernard, S.; Chiarotti, G.L.; Scandolo, S.; Tosatti, E. Physics of Iron at Earth’s Core Conditions. Science 2000, 287, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Balugani, S.; Hernandez, J.A.; Sévelin-Radiguet, N.; Mathon, O.; Recoules, V.; Kas, J.J.; Eakins, D.E.; Doyle, H.; Ravasio, A.; Torchio, R. New Constraints on the Melting Temperature and Phase Stability of Shocked Iron up to 270 GPa Probed by Ultrafast X-Ray Absorption Spectroscopy. Phys. Rev. Lett. 2024, 133, 254101. [Google Scholar] [CrossRef]
- Boehler, R. Temperatures in the Earth’s Core from Melting-Point Measurements of Iron at High Static Pressures. Nature 1993, 363, 534–536. [Google Scholar] [CrossRef]
- Umemoto, K.; Hirose, K. Liquid Iron-hydrogen Alloys at Outer Core Conditions by First-principles Calculations. Geophys. Res. Lett. 2015, 42, 7513–7520. [Google Scholar] [CrossRef]
- Bajgain, S.K.; Mookherjee, M.; Dasgupta, R. Earth’s Core Could Be the Largest Terrestrial Carbon Reservoir. Commun. Earth Environ. 2021, 2, 165. [Google Scholar] [CrossRef]
- Umemoto, K.; Hirose, K.; Imada, S.; Nakajima, Y.; Komabayashi, T.; Tsutsui, S.; Baron, A.Q.R. Liquid Iron-sulfur Alloys at Outer Core Conditions by First-principles Calculations. Geophys. Res. Lett. 2014, 41, 6712–6717. [Google Scholar] [CrossRef]
- Ganguly, J. Thermodynamics of Light Elements Stratification in the Earth’s Outer Core and Implications. Earth Planet. Sci. Lett. 2025, 659, 119333. [Google Scholar] [CrossRef]
Parameter a | Value |
---|---|
(GPa) | 80.24 |
(GPa) | 222.39 |
3.38 | |
0.21 | |
(10−3 cm3/g) | 172.31 |
(10−3 cm3/g) | 392.95 |
e0 (10−7/K) | 2.19 |
4.76 | |
γ0 | 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Xie, M.; Fu, J. Thermodynamic Properties of Liquid Fe-Mg Alloys Under Outer-Core Conditions Using First-Principles Molecular Dynamics. Appl. Sci. 2025, 15, 9065. https://doi.org/10.3390/app15169065
Xu H, Xie M, Fu J. Thermodynamic Properties of Liquid Fe-Mg Alloys Under Outer-Core Conditions Using First-Principles Molecular Dynamics. Applied Sciences. 2025; 15(16):9065. https://doi.org/10.3390/app15169065
Chicago/Turabian StyleXu, Hangli, Miaoxu Xie, and Jie Fu. 2025. "Thermodynamic Properties of Liquid Fe-Mg Alloys Under Outer-Core Conditions Using First-Principles Molecular Dynamics" Applied Sciences 15, no. 16: 9065. https://doi.org/10.3390/app15169065
APA StyleXu, H., Xie, M., & Fu, J. (2025). Thermodynamic Properties of Liquid Fe-Mg Alloys Under Outer-Core Conditions Using First-Principles Molecular Dynamics. Applied Sciences, 15(16), 9065. https://doi.org/10.3390/app15169065