Gamma and X-Ray Technologies for Medical Research: Image Analysis and Disease Discovered
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Conflicts of Interest
References
- Roentgen, W.C. On a new kind of rays. Science 1893, 3, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Hounsfield, G.N. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br. J. Radiol. 1973, 46, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Phelps, M.E. Positron emission tomography (PET): A report. J. Nucl. Med. 2000, 41, 661–689. [Google Scholar] [CrossRef] [PubMed]
- Czernin, J.; Allen-Auerbach, M.; Nathanson, D.; Herrmann, K. PET imaging in oncology: Current status and future perspectives. Eur. J. Nucl. Med. 2001, 28, 1083–1099. [Google Scholar] [CrossRef]
- Kuhl, D.E.; Edwards, R.Q.; Ricci, A.R.; Reivich, M. Quantitative section imaging using an emission computerized tomography (ECT). J. Nucl. Med. 1977, 18, 834–840. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.K.; Greenspan, H.; Shen, D. Deep Learning for Medical Image Analysis, 2nd ed.; The Elsevier and MICCAI Society Book Series; Academic Press: Cambridge, MA, USA, 2024; ISBN 978-0-323-85124-4. [Google Scholar]
- Litjens, G.; Koi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Paulus, M.J.; Gleason, S.S.; Kennel, S.J.; Hunsicker, P.R.; Johnson, D.K. High resolution X-ray computed tomography: An emerging tool for small animal cancer research. Neoplasia 2000, 2, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Rudin, M.; Weissleder, R. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. 2023, 2, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chest X-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3462–3471. [Google Scholar] [CrossRef]
- Busnatu, S.; Niculescu, A.-G.; Bolocan, A.; Petrescu, G.E.D.; Păduraru, D.N.; Năstasă, I.; Lupușoru, M.; Geantă, M.; Andronic, O.; Grumezescu, A.M.; et al. Clinical Applications of Artificial Intelligence—An Updated Overview. J. Clin. Med. 2022, 11, 2265. [Google Scholar] [CrossRef] [PubMed]
- Moriya, R.; Yoshimura, T.; Tang, M.; Ichikawa, S.; Sugimori, H. Development of a Method for Estimating the Angle of Lumbar Spine X-ray Images Using Deep Learning with Pseudo X-ray Images Generated from Computed Tomography. Appl. Sci. 2024, 14, 3794. [Google Scholar] [CrossRef]
- Usui, K.; Yoshimura, T.; Ichikawa, S.; Sugimori, H. Development of Chest X-ray Image Evaluation Software Using the Deep Learning Techniques. Appl. Sci. 2023, 13, 6695. [Google Scholar] [CrossRef]
- Sakaida, M.; Yoshimura, T.; Tang, M.; Ichikawa, S.; Sugimori, H.; Hirata, K.; Kudo, K. The Effectiveness of Semi-Supervised Learning Techniques in Identifying Calcifications in X-ray Mammography and the Impact of Different Classification Probabilities. Appl. Sci. 2024, 14, 5968. [Google Scholar] [CrossRef]
- Matusik, P.S.; Tabor, Z.; Kucybała, I.; Jarczewski, J.D.; Popiela, T.J. New Approaches to AI Methods for Screening Cardiomegaly on Chest Radiographs. Appl. Sci. 2024, 14, 11605. [Google Scholar] [CrossRef]
- Szewczuk, M.; Konefał, A. Optimization of Image Quality in Digital Mammography with the Response of a Selenium Detector by Monte Carlo Simulation. Appl. Sci. 2023, 13, 171. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konefał, A. Gamma and X-Ray Technologies for Medical Research: Image Analysis and Disease Discovered. Appl. Sci. 2025, 15, 8954. https://doi.org/10.3390/app15168954
Konefał A. Gamma and X-Ray Technologies for Medical Research: Image Analysis and Disease Discovered. Applied Sciences. 2025; 15(16):8954. https://doi.org/10.3390/app15168954
Chicago/Turabian StyleKonefał, Adam. 2025. "Gamma and X-Ray Technologies for Medical Research: Image Analysis and Disease Discovered" Applied Sciences 15, no. 16: 8954. https://doi.org/10.3390/app15168954
APA StyleKonefał, A. (2025). Gamma and X-Ray Technologies for Medical Research: Image Analysis and Disease Discovered. Applied Sciences, 15(16), 8954. https://doi.org/10.3390/app15168954