Transient Pressure Response in Pipes Colonized by Golden Mussels (Limnoperna fortunei): An Experimental Study
Abstract
Featured Application
Abstract
1. Introduction
1.1. The Golden Mussel (Limnoperna fortunei)
1.2. Hydraulic Transients in Pressurized Conduits
2. Materials and Methods
2.1. Characterization of Biological Infestation
2.2. Experimental Setup
- Reference conduit (control): clean pipe, free from fouling;
- Biofouled conduit: pipe partially coated internally with material simulating golden mussel colonies, representing typical infestation patterns.
2.3. Hydraulic Components
- Upstream reservoir: positioned at the highest point, with a total capacity of 4000 L and a central circular cross-section of 1.60 m in diameter.
- Main conduit: consisting of 1.45 m of cast iron piping with associated valves and fittings, along with 11.8 m of PVC pipeline, including a 2.40 m test section with flanged ends.
- Flow control valve: installed downstream to regulate flow conditions prior to transient generation.
- Quick-shut valve: a pneumatically actuated butterfly valve located at the end of the pipeline, responsible for inducing water hammer.
2.4. Hydraulic Transient Generation and Pneumatic Control System
2.5. Instrumentation and Data Acquisition
2.6. Theoretical Considerations on Biofouling Effects
3. Results and Discussion
- Black line (SM): clean pipe, no biofouling (reference condition).
- Red line (CM): biofouled pipe with fully open needle valve (fast closure).
- Blue line (CM)*: biofouled pipe with partially closed needle valve (slowed closure).
3.1. Pipe 2½”, Flow Rate 6.1 m3/h
3.2. Pipe 3”, Flow Rate 6.1 m3/h
3.3. Pipe 3”, Flow Rate 11.6 m3/h
3.4. Pipe 4”, Flow Rate 6.1 m3/h
3.5. Pipe 4”, Flow Rate 11.6 m3/h
3.6. Pipe 4”, Flow Rate 25.5 m3/h
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Oliveira, P.R.F.F.; Rodrigues, C.C.; Grano-Maldonado, M.I.; Rocha, T.L. The Golden Mussel Limnoperna Fortunei (Dunker, 1857) as an Emerging Concern for Biodiversity in the Brazilian Cerrado. Folia Malacol. 2023, 31, 211–221. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, M.; Yang, Y. Assessing the Effects of Environmental Factors on Filtration Rate of Golden Mussel (Limnoperna Fortunei). Ecol. Indic. 2024, 158, 111544. [Google Scholar] [CrossRef]
- Furlan-Murari, P.J.; Ruas, C.d.F.; Ruas, E.A.; Benício, L.M.; Urrea-Rojas, A.M.; Poveda-Parra, A.R.; Murari, E.; Lima, E.C.S.d.; Souza, F.P.d.; Lopera-Barrero, N.M. Structure and Genetic Variability of Golden Mussel (Limnoperna Fortunei) Populations from Brazilian Reservoirs. Ecol. Evol. 2019, 9, 2706–2714. [Google Scholar] [CrossRef]
- Darrigran, G.; Damborenea, C. Introdução à Biologia Das Invasões: O Mexilhão Dourado Na América Do Sul: Biologia, Dispersão, Impacto, Prevenção e Controle; Cubo Multimídia Ltd.: São Carlos, SP, Brazil, 2009; ISBN 978-85-60064-19-9. [Google Scholar]
- Miyahira, I.C.; Carballo, R.; Vera-Alcaraz, H.S.; Clavijo, C. Distribution of Invasive Bivalves in Paraguay: Filling the Gaps in the Heart of South America. Acta Limnol. Bras. 2024, 36, e2. [Google Scholar] [CrossRef]
- Guo, W.; Li, S.; Zhan, A. EDNA-Based Early Detection Illustrates Rapid Spread of the Non-Native Golden Mussel Introduced into Beijing via Water Diversion. Animals 2024, 14, 399. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, M.; Chen, X.; Zhang, J.; Wang, S.; Zhu, J.; Fu, X. Establishment Risk of Invasive Golden Mussel in a Water Diversion Project: An Assessment Framework. Environ. Sci. Ecotechnol. 2024, 17, 100305. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Cao, X.; Hoxha, T.; Zhan, A.; Haffner, G.D.; MacIsaac, H.J. Functional Response and Size-Selective Clearance of Suspended Matter by an Invasive Mussel. Sci. Total Environ. 2020, 711, 134679. [Google Scholar] [CrossRef]
- de Souza, T.R.C.; de Andrade, J.T.M.; Serrano, R.O.P.; Vidigal, T.H.D.A.; Viana, E.M.d.F.; Bastos, A.S.; Martinez, C.B. Energy Efficiency Analysis of Pumping Systems Impacted by the Golden Mussel: A Case Study in the Brazilian Amazon. Energies 2023, 16, 1858. [Google Scholar] [CrossRef]
- Moreira, A.M.S.; Freitas, E.T.F.; Reis, M.d.P.; Nogueira, J.M.; Barbosa, N.P.d.U.; Reis, A.L.M.; Pelli, A.; Camargo, P.R.d.S.; Cardoso, A.V.; de Paula, R.S.; et al. Acute Exposure to Two Biocides Causes Morphological and Molecular Changes in the Gill Ciliary Epithelium of the Invasive Golden Mussel Limnoperna Fortunei (Dunker, 1857). Animals 2023, 13, 3258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, M.; Wang, Z.; Liu, W.; Yu, D. Experimental Study on the Effect of Turbulence in Pipelines on the Mortality of Limnoperna Fortunei Veligers. Ecol. Eng. 2017, 109, 101–118. [Google Scholar] [CrossRef]
- de Castro, A.L.P. Estudo de Velocidades e Do Número de Reynolds Para o Descolamento Dos Mexilhões Dourados (Limnoperna Fortunei); Universidade Federal de Minas Gerais: Belo Horizonte, MG, Brazil, 2013. [Google Scholar]
- Xiao, R.; Liu, D.; Xu, Y.; Li, T.; Ma, J. A Review of the Effects of Limnoperna Fortunei (Dunker, 1857): Invasion on Hydraulic Structures and Ecosystems and Their Control. Sustainability 2025, 17, 2240. [Google Scholar] [CrossRef]
- Guo, H.L.; Chen, J. Simulation of Water Hammer in Long Distance Water Transmission Pipeline Based on Flowmaster. J. Phys. Conf. Ser. 2024, 2707, 012093. [Google Scholar] [CrossRef]
- An, M.; Zhong, W.; Xu, W.; Wang, X. Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident. Fluid Dyn. Mater. Process. 2024, 20, 1331–1349. [Google Scholar] [CrossRef]
- Aguinaga, A.; Cando, E.; Orquera, E. The Mechatronic Approach in the Mathematical Modelling and Simulation to Control the Water Hammer in Hydraulic Facilities. In Proceedings of the 9th World Congress on Mechanical, Chemical, and Material Engineering, London, UK, 6–8 August 2023. [Google Scholar]
- Wang, H.; Zhou, L.; Liu, D. Experimental Investigation of Column Separation Using Rapid Closure of an Upstream Valve. Appl. Sci. 2023, 13, 12874. [Google Scholar] [CrossRef]
- Chaudhry, M.H. Applied Hydraulic Transients; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-8537-7. [Google Scholar]
- Ladino-Moreno, E.O.; García-Ubaque, C.A.; Espejo-Mojica, O.G. Method to Determine Instantaneous Transient Responses in Pressurized Pipes from Transfer Functions and State Space for Evaluation of Leak Signals. MethodsX 2024, 12, 102762. [Google Scholar] [CrossRef] [PubMed]
- Uyanık, M.C.; Bozkuş, Z. Introducing a Newly Developed Computer Software to Analyze Fluid Transients in Pressurized Pipeline Systems. Arab. J. Sci. Eng. 2024, 49, 13769–13785. [Google Scholar] [CrossRef]
- Neyestanaki, M.K.; Dunca, G.; Jonsson, P.; Cervantes, M.J. A Comparison of Different Methods for Modelling Water Hammer Valve Closure with CFD. Water 2023, 15, 1510. [Google Scholar] [CrossRef]
- Li, Z.; Jin, J.; Pan, Z.; Sun, J.; Geng, K.; Qiao, Y. Impact of Branch Pipe Valve Closure Procedures on Pipeline Water Hammer Pressure: A Case Study of Xinlongkou Hydropower Station. Appl. Sci. 2025, 15, 897. [Google Scholar] [CrossRef]
- Kriaa, K.; Elgamal, M.; Farouk, M. Experimental Study on Reducing Water Hammer Effects in UPVC Pipes Using Rubber Bypass Tubes. Ain Shams Eng. J. 2024, 15, 102562. [Google Scholar] [CrossRef]
- Kravchuk, A.; Cherniuk, V.; Kravchuk, O.; Airapetian, T. Assessing the Value of the Hydraulic Friction Factor in Pipelines Working with a Flow Connection along the Path. East.-Eur. J. Enterp. Technol. 2022, 5, 61–67. [Google Scholar] [CrossRef]
- Zou, L.; Luo, J.; Xu, W.; Zhai, Y.; Li, J.; Qu, T.; Fu, G. Experimental Study on Influence of Particle Shape on Shockwave from Collapse of Cavitation Bubble. Ultrason. Sonochem. 2023, 101, 106693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, X.; Zhang, Y.; Zhang, Y.; Du, X. Experimental Study of Influences of a Particle on the Collapsing Dynamics of a Laser-Induced Cavitation Bubble near a Solid Wall. Exp. Therm. Fluid Sci. 2019, 105, 289–306. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, C.; Yang, J. Hydraulic Transient Simulation of Pipeline-Open Channel Coupling Systems and Its Applications in Hydropower Stations. Water 2022, 14, 2897. [Google Scholar] [CrossRef]
- Castellani, F.; Capponi, C.; Brunone, B.; Vedovelli, M.; Meniconi, S. Performance Assessment of Pneumatic-Driven Automatic Valves to Improve Pipeline Fault Detection Procedure by Fast Transient Tests. Sensors 2024, 24, 1825. [Google Scholar] [CrossRef] [PubMed]
- El-Morshedy, S.E.-D. Thermal-Hydraulic Simulation of ITER Tungsten Divertor Monoblock for Loss of Flow Transient. Nucl. Mater. Energy 2024, 38, 101616. [Google Scholar] [CrossRef]
- Jonsson, L.M.; Björlenius, B. Dynamic and Initial Head Loss in Full-Scale Wastewater Filtration and Measures to Prevent Long-Term Initial Head Loss. Water Pr. Technol. 2022, 17, 1390–1405. [Google Scholar] [CrossRef]
- Huong, Y.Z.; Tan, Y.Y.; Tang, F.E.; Agus, S. Modelling of Hydraulic Dynamics in Sludge Treatment Reed Beds with Moving Boundary Condition. MATEC Web. Conf. 2023, 377, 01013. [Google Scholar] [CrossRef]
- Sarmento, F.J. Automatic Routing of Water Supply Pipelines. RBRH 2022, 27, e24. [Google Scholar] [CrossRef]
- Bakri, B.; Pallu, S.; Pongmanda, S.; Arai, Y.; Ihsan, M. Effects of Fluctuation in Discharge and Head on Flow Parameters and Head Losses in Pipeline Networks. IOP Conf. Ser. Earth Env. Sci. 2022, 1117, 012069. [Google Scholar] [CrossRef]
- Santos, L.P.; de Souza, T.R.C.; de Souza Coelho, S.A.; Soares, F.L.A.; Tarqui, J.L.Z.; de Faria Viana, E.M. Uso de Scanner 3D Na Determinação Da Rugosidade Superficial de Uma Placa Cerâmica Infestada Com Mexilhão-Dourado. In Proceedings of the Anais do XXIII Simpósio Brasileiro de Recursos Hídricos, Foz do Iguaçu, PR, Brazil, 24–28 November 2019. [Google Scholar]
- Rico, E.A.M. Influência Da Taxa de Infestação de Limnoperna Fortunei No Aumento Da Perda de Carga Em Sistemas Hidráulicos; Universidade Federal de Minas Gerais: Belo Horizonte, MG, Brazil, 2018. [Google Scholar]
- Azevedo Netto, J.M.d.; y Fernández, M. Manual de Hidráulica, 9th ed.; Blucher: São Paulo, SP, Brazil, 2018; ISBN 978-85-212-0889-1. [Google Scholar]
- De Souza, W.F.; Ribeiro, E.; de Castro, H.F.P.; Veloso, M.A.F.; de Paula Barros, G.; dos Santos, A.A.C. Challenges with 3D Printed Parts for Hydraulic Experimental Benchmarks: A Perforated Plate Case Study. Flow Meas. Instrum. 2024, 96, 102549. [Google Scholar] [CrossRef]
- Rota, I.; Bertolo, D.; Gastaldi, D. Printing Fidelity Assessment and Micro-Mechanical Characterization of FDM-Printed PLA/HA Composite for Maxillofacial and Oral Applications. J. Mech. Behav. Biomed. Mater. 2025, 168, 106987. [Google Scholar] [CrossRef] [PubMed]
- Oertel, M.; Willems, H.; Belay, B. Experimental Model Fabrication via 3D Print Technique in Hydraulic Laboratories. In Proceedings of the 39th IAHR World Congress, Granada, Spain, 19–24 June 2022; pp. 2819–2824. [Google Scholar]
- Tan, Y.; Ni, Y.; Xu, W.; Xie, Y.; Li, L.; Tan, D. Key Technologies and Development Trends of the Soft Abrasive Flow Finishing Method. J. Zhejiang Univ.-Sci. A 2023, 24, 1043–1064. [Google Scholar] [CrossRef]
t [s] | sl [mm] | θ | e [mm] | bs [mm] | sh [mm] | t [s] | sl [mm] | θ | e [mm] | bs [mm] | sh [mm] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.6 | 32.7 | 0.8 | 0.5 | 1.3 | 22 | 29.7 | 41.2 | 12.3 | 7.5 | 19.8 | |
2 | 4.5 | 34.5 | 1.5 | 0.9 | 2.4 | 23 | 30.5 | 41.4 | 12.7 | 7.7 | 20.4 | |
3 | 6.4 | 35.7 | 2.2 | 1.3 | 3.5 | 24 | 31.3 | 41.4 | 13.0 | 8.0 | 21.0 | |
4 | 8.2 | 36.5 | 2.9 | 1.7 | 4.6 | 25 | 32.0 | 41.5 | 13.4 | 8.2 | 21.6 | |
5 | 9.9 | 37.2 | 3.5 | 2.2 | 5.7 | 26 | 32.7 | 41.6 | 13.7 | 8.4 | 22.1 | |
6 | 11.6 | 37.7 | 4.2 | 2.6 | 6.8 | 27 | 33.5 | 41.7 | 14.1 | 8.6 | 22.7 | |
7 | 13.1 | 38.2 | 4.9 | 3.0 | 7.8 | 28 | 34.2 | 41.8 | 14.4 | 8.8 | 23.2 | |
8 | 14.6 | 38.6 | 5.5 | 3.4 | 8.8 | 29 | 34.9 | 41.9 | 14.8 | 9.0 | 23.8 | |
9 | 16.0 | 38.9 | 6.1 | 3.7 | 9.8 | 30 | 35.6 | 42.0 | 15.1 | 9.2 | 24.3 | |
10 | 17.4 | 39.2 | 6.7 | 4.1 | 10.8 | 31 | 36.3 | 42.0 | 15.4 | 9.4 | 24.8 | |
11 | 18.7 | 39.5 | 7.3 | 4.4 | 11.7 | 32 | 37.0 | 42.1 | 15.8 | 9.6 | 25.4 | |
12 | 19.9 | 39.7 | 7.8 | 4.8 | 12.6 | 33 | 37.7 | 42.2 | 16.1 | 9.8 | 25.9 | |
13 | 21.1 | 39.9 | 8.3 | 5.1 | 13.4 | 34 | 38.4 | 42.3 | 16.5 | 10.0 | 26.5 | |
14 | 22.2 | 40.1 | 8.8 | 5.4 | 14.2 | 35 | 39.1 | 42.3 | 16.8 | 10.3 | 27.1 | |
15 | 23.3 | 40.3 | 9.3 | 5.7 | 15.0 | 36 | 39.8 | 42.4 | 17.2 | 10.5 | 27.6 | |
16 | 24.3 | 40.5 | 9.8 | 6.0 | 15.8 | 37 | 40.5 | 42.5 | 17.5 | 10.7 | 28.2 | |
17 | 25.3 | 40.6 | 10.3 | 6.3 | 16.5 | 38 | 41.3 | 42.6 | 17.9 | 10.9 | 28.8 | |
18 | 26.3 | 40.8 | 10.7 | 6.5 | 17.2 | 39 | 42.1 | 42.6 | 18.3 | 11.2 | 29.5 | |
19 | 27.2 | 40.9 | 11.1 | 6.8 | 17.9 | 40 | 42.9 | 42.7 | 18.7 | 11.4 | 30.1 | |
20 | 28.1 | 41.0 | 11.5 | 7.0 | 18.5 | 41 | 43.8 | 42.8 | 19.1 | 11.7 | 30.8 | |
21 | 28.9 | 41.1 | 11.9 | 7.3 | 19.2 | 42 | 44.6 | 42.9 | 19.6 | 11.9 | 31.5 |
Diameter [in] | Flow Rate [m3/h] | Velocity in Clean Pipes | Velocity in Biofouled Pipes |
---|---|---|---|
4 | 25.50 | 0.90 | 1.31 |
4 | 11.60 | 0.41 | 0.60 |
4 | 6.10 | 0.22 | 0.31 |
3 | 11.60 | 0.73 | 1.23 |
3 | 6.10 | 0.38 | 0.65 |
2.1/2 | 6.10 | 0.51 | 0.95 |
Graph | Pipe Diameter | Flow Rate (m3/h) | SM Peak Pressure (mH2O) | CM Peak Pressure (mH2O) | SM Valve Time (s) | CM* Valve Time (s) |
---|---|---|---|---|---|---|
Figure 11 | 2½” | 6.1 | 9.0 | 13.3 | 0.88 | 1.98 |
Figure 12 | 3” | 6.1 | 9.0 | 9.7 | 0.88 | 1.05 |
Figure 13 | 3” | 11.6 | 11.4 | 13.2 | 0.88 | 1.24 |
Figure 14 | 4” | 6.1 | 8.2 | 8.3 | 0.82 | 0.82 |
Figure 15 | 4” | 11.6 | 11.0 | 11.1 | 0.81 | 0.81 |
Figure 16 | 4” | 25.5 | 14.0 | 17.2 | 0.82 | 1.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, A.G., Jr.; Ferreira, B.E.P.; Souza, T.R.C.d.; Bastos, A.S.; Viana, E.M.d.F.; Martinez, C.B. Transient Pressure Response in Pipes Colonized by Golden Mussels (Limnoperna fortunei): An Experimental Study. Appl. Sci. 2025, 15, 8923. https://doi.org/10.3390/app15168923
Ferreira AG Jr., Ferreira BEP, Souza TRCd, Bastos AS, Viana EMdF, Martinez CB. Transient Pressure Response in Pipes Colonized by Golden Mussels (Limnoperna fortunei): An Experimental Study. Applied Sciences. 2025; 15(16):8923. https://doi.org/10.3390/app15168923
Chicago/Turabian StyleFerreira, Afonso Gabriel, Jr., Bruno Eustáquio Pires Ferreira, Tâmara Rita Costa de Souza, Adriano Silva Bastos, Edna Maria de Faria Viana, and Carlos Barreira Martinez. 2025. "Transient Pressure Response in Pipes Colonized by Golden Mussels (Limnoperna fortunei): An Experimental Study" Applied Sciences 15, no. 16: 8923. https://doi.org/10.3390/app15168923
APA StyleFerreira, A. G., Jr., Ferreira, B. E. P., Souza, T. R. C. d., Bastos, A. S., Viana, E. M. d. F., & Martinez, C. B. (2025). Transient Pressure Response in Pipes Colonized by Golden Mussels (Limnoperna fortunei): An Experimental Study. Applied Sciences, 15(16), 8923. https://doi.org/10.3390/app15168923