Use of an IMU Device to Assess the Performance in Swimming and Match Positions of Impaired Water Polo Athletes: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Classification Rules
Technical Assessment and the Observation (OA)
2.2. Player’s Trunk Position (Horizontal or Vertical) During the Match
2.2.1. Measurement Protocol
2.2.2. Exclusion Criteria
2.3. Swimming Analysis
Kinematic Parameters
2.4. Turning Movements Assessment
2.5. Statistical Analysis
3. Results
3.1. Player’s Trunk Position (Horizontal or Vertical) During the Match
3.2. Swimming Analysis
3.3. Turning Movements Assessment
4. Discussion
Potentiality and Limitations
5. Conclusions
- There was no significant difference in the average percentage of time spent in vertical (61.2% in WPA vs. 60.3% in traditional WP, Δ = 0.88%, p = 0.841) and horizontal positions between WPA and WP athletes.
- Low-class players stay horizontal for more time because they take more time to move from one side of the pool to the other, while high-class players are quicker in their displacements. This way, they can dedicate more time to passing and covering the defensive positions, waiting for slower players to return.
- Consistent with the classification system, performance metrics in swimming showed strong positive correlations with classification points.
- IMU-derived metrics like the variance of finite differences and spectral analysis have been useful in quantifying movement quality. For instance, players with coordination impairment (spasticity) exhibited lower smoothness in turning movements, suggesting less fluid execution than players with other impairments affecting the same limbs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Luigi, A.J. Adaptive Sports Medicine; Springer: Cham, Switzerland, 2018; Volume 402. [Google Scholar]
- Blauwet, C.A.; Benjamin-Laing, H.; Stomphorst, J.; Van de Vliet, P.; Pit-Grosheide, P.; Willick, S.E. Testing for Boosting at the Paralympic Games: Policies, Results and Future Directions. Br. J. Sports Med. 2013, 47, 832–837. [Google Scholar] [CrossRef]
- Tweedy, S.M.; Vanlandewijck, Y.C. International Paralympic Committee Position Stand—Background and Scientific Principles of Classification in Paralympic Sport. Br. J. Sports Med. 2011, 45, 259–269. [Google Scholar] [CrossRef]
- Vanlandewijck, Y.C.; Thompson, W.R. Handbook of Sports Medicine and Science: The Paralympic Athlete; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mann, D.L.; Tweedy, S.M.; Jackson, R.C.; Vanlandewijck, Y.C. Classifying the Evidence for Evidence-Based Classification in Paralympic Sport. J. Sports Sci. 2021, 39, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, D.; Ascione, A.; Masala, D. Pallanuoto: Dalle Metodologie Dell’Allenamento Ai Benefici Psico-Fisici e Sociali. Form. Insegn. 2018, 16, 205–212. [Google Scholar]
- Idrizović, K.; Milošević, D.; Pavlović, R. Physiological Diferencess between Top Elite and Elite Waterpolo Players. Sport Sci. 2013, 6, 59–65. [Google Scholar]
- Smith, H.K. Applied Physiology of Water Polo. Sports Med. 1998, 26, 317–334. [Google Scholar] [CrossRef]
- Solum, J. Science of Shooting Water Polo Fundamentals; Lulu. com: Morrisville, NC, USA, 2010. [Google Scholar]
- Snyder, P. Water Polo for Players & Teachers of Aquatics; LA Olympic Foundation: Los Angeles, CA, USA, 2008. [Google Scholar]
- Dimitric, G.; Kontic, D.; Versic, S.; Scepanovic, T.; Zenic, N. Validity of the Swimming Capacities and Anthropometric Indices in Predicting the Long-Term Success of Male Water Polo Players: A Position-Specific Prospective Analysis over a Ten-Year Period. Int. J. Environ. Res. Public Health 2022, 19, 4463. [Google Scholar] [CrossRef]
- Canossa, S.; Fernandes, R.J.; Estriga, L.; Abraldes, J.A.; Lupo, C.; Garganta, J.M. Water Polo Offensive Methods after the 2018 FINA Rules Update. Int. J. Environ. Res. Public Health 2022, 19, 2568. [Google Scholar] [CrossRef]
- Lozovina, M.; Durović, N.; Katić, R. Position Specific Morphological Characteristics of Elite Water Polo Players. Coll. Antropol. 2009, 33, 781–789. [Google Scholar]
- Botonis, P.G.; Toubekis, A.G.; Platanou, T.I. Physiological and Tactical On-Court Demands of Water Polo. J. Strength Cond. Res. 2019, 33, 3188–3199. [Google Scholar] [CrossRef]
- De Jesus, K.; Figueiredo, P.; De Jesus, K.; Pereira, F.; Vilas-Boas, J.P.; Machado, L.; Fernandes, R.J. Kinematic Analysis of Three Water Polo Front Crawl Styles. J. Sports Sci. 2012, 30, 715–723. [Google Scholar] [CrossRef]
- Caprioli, L.; Romagnoli, C.; Campoli, F.; Edriss, S.; Padua, E.; Bonaiuto, V.; Annino, G. Reliability of an Inertial Measurement System Applied to the Technical Assessment of Forehand and Serve in Amateur Tennis Players. Bioengineering 2025, 12, 30. [Google Scholar] [CrossRef]
- Alcala, E.; Voerman, J.; Konrath, J.; Vydhyanathan, A. Xsens DOT Wearable Sensor Platform White Paper. White Paper, 20 January 2021. [Google Scholar]
- Slopecki, M.; Charbonneau, M.; Deguire, S.; Côté, J.N.; Clément, J. Technical Performance Analyses in Elite Paralympic Swimming Using Wearable Technology: Two Case Studies. Sports Biomech. 2025, 1–14. [Google Scholar] [CrossRef]
- Delhaye, E.; Bouvet, A.; Nicolas, G.; Vilas-Boas, J.P.; Bideau, B.; Bideau, N. Automatic Swimming Activity Recognition and Lap Time Assessment Based on a Single IMU: A Deep Learning Approach. Sensors 2022, 22, 5786. [Google Scholar] [CrossRef]
- Hamidi Rad, M.; Aminian, K.; Gremeaux, V.; Massé, F.; Dadashi, F. Swimming Phase-Based Performance Evaluation Using a Single IMU in Main Swimming Techniques. Front. Bioeng. Biotechnol. 2021, 9, 793302. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Jie, T.; Zhou, Z.; Yuan, Y.; Jemni, M.; Quan, W.; Gao, Z.; Xiang, L.; Gusztav, F.; et al. Data-Driven Deep Learning for Predicting Ligament Fatigue Failure Risk Mechanisms. Int. J. Mech. Sci. 2025, 301, 110519. [Google Scholar] [CrossRef]
- Chen, T.; Xu, D.; Zhou, Z.; Zhou, H.; Shao, S.; Gu, Y. Prediction of Vertical Ground Reaction Forces Under Different Running Speeds: Integration of Wearable IMU with CNN-xLSTM. Sensors 2025, 25, 1249. [Google Scholar] [CrossRef]
- Arlotti, J.S.; Carroll, W.O.; Afifi, Y.; Talegaonkar, P.; Albuquerque, L.; Ball, J.E.; Chander, H.; Petway, A. Benefits of IMU-Based Wearables in Sports Medicine: Narrative Review. Int. J. Kinesiol. Sports Sci. 2022, 10, 36–43. [Google Scholar] [CrossRef]
- Bouvet, A.; Pla, R.; Delhaye, E.; Nicolas, G.; Bideau, N. Profiling Biomechanical Abilities during Sprint Front-Crawl Swimming Using IMU and Functional Clustering of Variabilities. Sports Biomech. 2024, 1–21. [Google Scholar] [CrossRef]
- Chadefaux, D.; Olivié, J.; Bonnet, X. Whole-Body Vibration Exposure during Snowboard with Lower Limb Amputations. In Proceedings of the 2024 IEEE International Workshop on Sport, Technology and Research (STAR), Lecco, LC, Italy, 8–10 July 2024; pp. 60–65. [Google Scholar]
- Paté, A.; Petel, M.; Belhassen, N.; Chadefaux, D. Radiated Sound and Transmitted Vibration Following the Ball/Racket Impact of a Tennis Serve. Vibration 2024, 7, 894–911. [Google Scholar] [CrossRef]
- Verdel, N.; Mohorcic, M.; Drobnic, M.; Supej, M.; Depolli, M. Time Synchronization in Wireless Imu Sensors for Accurate Gait Analysis during Running. In Proceedings of the 2023 IEEE International Workshop on Sport, Technology and Research (STAR), Cavalese, TN, Italy, 14–16 September 2023; pp. 126–129. [Google Scholar]
- Leddy, C.; Bolger, R.; Byrne, P.J.; Kinsella, S.; Zambrano, L. Concurrent Validity of the Human Pose Estimation Model “MediaPipe Pose” and the XSENS Inertial Measuring System for Knee Flexion and Extension Analysis During Hurling Sport Motion. In Proceedings of the 2023 IEEE International Workshop on Sport, Technology and Research (STAR), Cavalese, YN, Italy, 14–16 September 2023; pp. 49–52. [Google Scholar]
- Slopecki, M.; Charbonneau, M.; Lavallière, J.-M.; Côté, J.N.; Clément, J. Validation of Automatically Quantified Swim Stroke Mechanics Using an Inertial Measurement Unit in Paralympic Athletes. Bioengineering 2023, 11, 15. [Google Scholar] [CrossRef]
- Edriss, S.; Romagnoli, C.; Caprioli, L.; Zanela, A.; Panichi, E.; Campoli, F.; Padua, E.; Annino, G.; Bonaiuto, V. The Role of Emergent Technologies in the Dynamic and Kinematic Assessment of Human Movement in Sport and Clinical Applications. Appl. Sci. 2024, 14, 1012. [Google Scholar] [CrossRef]
- Tweedy, S.M.; Beckman, E.M.; Connick, M.J. Paralympic Classification: Conceptual Basis, Current Methods, and Research Update. PMR 2014, 6, S11–S17. [Google Scholar] [CrossRef]
- International Paralympic Committee IPC CLASSIFICATION 2024. Available online: https://www.paralympic.org/classification-code (accessed on 1 July 2025).
- World Para Swimming CLASSIFICATION IN PARA SWIMMING 2024. Available online: https://www.paralympic.org/swimming/classification (accessed on 1 July 2025).
- Brown, M.; Hislop, H.; Avers, D. Daniels and Worthingham’s Muscle Testing-E-Book: Daniels and Worthingham’s Muscle Testing-E-Book; Elsevier Health Sciences: Singapore, 2013. [Google Scholar]
- Mullaney, M.J.; McHugh, M.P.; Johnson, C.P.; Tyler, T.F. Reliability of Shoulder Range of Motion Comparing a Goniometer to a Digital Level. Physiother. Theory Pract. 2010, 26, 327–333. [Google Scholar] [CrossRef]
- Kolber, M.J.; Hanney, W.J. The Reliability and Concurrent Validity of Shoulder Mobility Measurements Using a Digital Inclinometer and Goniometer: A Technical Report. Int. J. Sports Phys. Ther. 2012, 7, 306–313. [Google Scholar]
- Federazione Sportiva Paralimpica REGOLAMENTO DELLE CLASSIFICAZIONI DISCIPLINA PALLANUOTO; Approvata con delibera di Consiglio Federale n. 115 del 1 3 /12/2022 2022. Available online: https://www.finp.it/kp/uploads/regolamento-tecnico-pallanuoto-paralimpica-2025-(approvato)_001.pdf (accessed on 1 July 2025).
- Federazione Italiana Nuoto Paralimpico. Finp 2025. Available online: https://www.finp.it (accessed on 1 July 2025).
- Frontuto, C.; Campoli, F.; Caprioli, L.; Edriss, S.; Galvan, A.; Giugliano, M.; Romagnoli, C.; Annino, G.; Bonaiuto, V. Technical Assessment in Paralympic Water Polo: A Measurement Protocol to Support the Classification of Athletes with Disabilities. In Proceedings of the 2024 IEEE International Workshop on Sport, Technology and Research (STAR), Lecco, LC, Italy, 8–10 July 2024; pp. 54–59. [Google Scholar]
- Movella Technologies. Xsens DOT. Available online: https://www.movella.com (accessed on 1 July 2025).
- Beange, K.H.; Chan, A.D.; Graham, R.B. Investigating Concurrent Validity of Inertial Sensors to Evaluate Multiplanar Spine Movement. J. Biomech. 2024, 164, 111939. [Google Scholar] [CrossRef]
- Luinge, H.J.; Bellusci, G.; Dijkstra, F. Compression of IMU Data for Transmission of AP. U.S. Patent 20120223846A1, 17 March 2015. [Google Scholar]
- Caruso, M.; Sabatini, A.M.; Knaflitz, M.; Gazzoni, M.; Della Croce, U.; Cereatti, A. Accuracy of the Orientation Estimate Obtained Using Four Sensor Fusion Filters Applied to Recordings of Magneto-Inertial Sensors Moving at Three Rotation Rates. In Proceedings of the 2019 41st annual International Conference of the IEEE engineering in medicine and biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2053–2058. [Google Scholar]
- Brückner, H.-P.; Spindeldreier, C.; Blume, H. Exploring Energy Efficiency of Hardware-Architectures for IMU Based Orientation Estimation. In Sensing Technology: Current Status and Future Trends III; Springer: Cham, Switzerland, 2015; pp. 157–178. [Google Scholar]
- LaFiandra, M.; Lynch, S.; Frykman, P.; Harman, E.; Ramos, H.; Mello, R. A Comparison of Two Commercial off the Shelf Backpacks to the Modular Lightweight Load Carrying Equipment (MOLLE) in Biomechanics, Metabolic Cost and Performance; US Army Research Institute of Environmental Medicine: Natick, MA, USA, 2003; p. t03-15. [Google Scholar]
- Bouvet, A.; Pla, R.; Delhaye, E.; Nicolas, G.; Bideau, N. Profiles of Stroke Regulations Discriminate between Finishing Positions during International Open Water Races. J. Sports Sci. 2023, 41, 1309–1316. [Google Scholar] [CrossRef]
- Morais, J.E.; Barbosa, T.M.; Nevill, A.M.; Cobley, S.; Marinho, D.A. Understanding the Role of Propulsion in the Prediction of Front-Crawl Swimming Velocity and in the Relationship between Stroke Frequency and Stroke Length. Front. Physiol. 2022, 13, 876838. [Google Scholar] [CrossRef]
- Verrelli, C.; Romagnoli, C.; Jackson, R.; Ferretti, I.; Annino, G.; Bonaiuto, V. Front Crawl Stroke in Swimming: Phase Durations and Self-Similarity. J. Biomech. 2021, 118, 110267. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, C.; Bonaiuto, V.; Gatta, G. Arm Propulsion in Front Crawl Stroke. Sports 2025, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.-J. Jasp 0.18.3 2024. Available online: https://jasp-stats.org (accessed on 1 July 2025).
- Moorey, R. Jpower; github: Tokyo, Japan, 2017. [Google Scholar]
- Lupo, C.; Tessitore, A.; Minganti, C.; Capranica, L. Notational Analysis of Elite and Sub-Elite Water Polo Matches. J. Strength Cond. Res. 2010, 24, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Lupo, C.; Condello, G.; Tessitore, A. Notational Analysis of Elite Men’s Water Polo Related to Specific Margins of Victory. J. Sports Sci. Med. 2012, 11, 516–525. [Google Scholar] [PubMed]
- Platanou, T.; Geladas, N. The Influence of Game Duration and Playing Position on Intensity of Exercise during Match-Play in Elite Water Polo Players. J. Sports Sci. 2006, 24, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Berryman, N.; Romeas, T. Questioning the Validity and Reliability of Using a Video-Based Test to Assess Decision Making among Female and Male Water Polo Players. Int. J. Sports Sci. Coach. 2024, 19, 628–637. [Google Scholar] [CrossRef]
Category | Subcategory 0 | Subcategory 1 |
---|---|---|
A | missing one leg | paralyzed leg |
B | missing both legs | both legs paralyzed |
C | missing one arm | paralyzed arm |
D | missing one leg and the arm on the same side | a leg or an arm on the same side paralyzed |
E | missing one leg and the arm on the opposite side | a leg or an arm on the opposite side paralyzed |
F | injury to one leg | |
G | injury to both legs | |
H | injury to one arm | |
I | injury to both arms | |
J | injury to one arm and the leg on the same side | |
K | injury to one arm and the leg on the opposite side |
Test ID | Points | Code | Impairment | Player ID |
---|---|---|---|---|
#T1 | 1 | B1 | MP | #6 |
#T2 | 1.5 | B1 | MP | #5 |
#T3 | 1.5 | D1 | CO | #8 |
#T4 | 2 | B1 | MP + ROM | #4 |
#T5 | 2.5 | D1 | CO | #9 |
#T6 | 2.5 | B1 | MP + ROM | #10 |
#T7 | 3 | A0 | AMP | #2 |
#T8 | 3 | A1 | MP | #3 |
#T9 | 3 | A1 | MP | #7 |
#T10 | 3.5 | F | AMP | #1 |
Test ID | Points | Code | Impairment | Player ID |
---|---|---|---|---|
#T1 | 2 | B1 | CO | #15 |
#T2 | 2.5 | E0 | AMP | #13 |
#T3 | 2.5 | B1 | CO | #20 |
#T4 | 3 | D1 | ROM | #14 |
#T5 | 3 | G | MP + ROM | #16 |
#T6 | 3.5 | G | CO | #12 |
#T7 | 3.5 | F | AMP | #17 |
#T8 | 3.5 | A0 | AMP | #18 |
#T9 | 3.5 | A1 | MP | #19 |
#T10 | 5 | – | NORMO | #11 |
Test ID | Points | Code | Impairment | Player ID |
---|---|---|---|---|
#T1 | 1.5 | B1 | CO | #21 |
#T2 | 2.5 | E0 | AMP | #13 |
#T3 | 3 | B1 | MP | #22 |
#T4 | 3 | D1 | ROM | #14 |
#T5 | 3 | A0 | AMP | #23 |
Time (25 m Pool) | Stroke Cycle Length | Average Speed | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | F [s] | FH [s] | BS [s] | FB [s] | Mean ± SD | F [m] | FH [m] | BS [m] | FB [m] | Mean + SD | F [m/s] | FH [m/s] | BS [m/s] | FB [m/s] | Mean ± SD |
11 | 23.05 | 23.05 | 28.95 | 25.33 | 25.10 ± 2 | 2.08 | 1.67 | 1.67 | 1.47 | 1.72 ± 0.2 | 1.09 | 1.09 | 0.86 | 1.00 | 1.01 ± 0.1 |
12 | 26.68 | 41.06 | 45.54 | 40.91 | 38.55 ± 7 | 1.47 | 0.78 | 1.25 | 0.78 | 1.07 ± 0.3 | 0.93 | 0.61 | 0.54 | 0.61 | 0.67 ± 0.2 |
13 | 23.95 | 33.22 | 43.03 | 44.15 | 36.09 ± 8 | 1.32 | 0.96 | 0.96 | 0.78 | 1.01 ± 0.2 | 1.04 | 0.76 | 0.58 | 0.57 | 0.74 ± 0.2 |
14 | 28.81 | 31.38 | 47.99 | 42.03 | 37.55 ± 8 | 1.25 | 1.09 | 0.93 | 0.93 | 1.05 ± 0.1 | 0.86 | 0.81 | 0.52 | 0.60 | 0.70 ± 0.1 |
15 | 36.47 | 43.18 | 64.51 | 41.40 | 46.39 ± 11 | 1.25 | 1.09 | 1.19 | 1.09 | 1.15 ± 0.1 | 0.69 | 0.58 | 0.38 | 0.61 | 0.57 ± 0.1 |
16 | 44.08 | 44.89 | 57.38 | 52.41 | 49.69 ± 6 | 1.56 | 0.86 | 1.09 | 1.19 | 1.18 ± 0.3 | 0.57 | 0.56 | 0.44 | 0.48 | 0.51 ± 0.1 |
17 | 26.04 | 32.82 | 45.13 | 38.12 | 35.53 ± 7 | 1.47 | 1.14 | 1.19 | 1.00 | 1.20 ± 0.2 | 0.96 | 0.76 | 0.56 | 0.66 | 0.73 ± 0.2 |
18 | 18.34 | 22.47 | 25.66 | 31.73 | 24.55 ± 5 | 1.92 | 1.56 | 1.67 | 1.19 | 1.59 ± 0.3 | 1.39 | 1.14 | 0.96 | 0.78 | 1.07 ± 0.2 |
19 | 25.86 | 31.10 | 38.78 | 37.13 | 33.22 ± 5 | 1.39 | 1.19 | 1.04 | 1.00 | 1.16 ± 0.2 | 0.96 | 0.81 | 0.64 | 0.68 | 0.77 ± 0.1 |
20 | 38.22 | 53.38 | 71.69 | 54.74 | 54.51 ± 12 | 1.00 | 0.81 | 0.66 | 0.96 | 0.86 ± 0.1 | 0.66 | 0.47 | 0.35 | 0.45 | 0.48 ± 0.1 |
Gyro X | ||
---|---|---|
Player | #16 | #18 |
Median | −0.91 | 21.93 |
IQR | 112.86 | 172.25 |
Range | 591.66 | 594.92 |
Test ID | Points | Impairment | %BP[0–1 Hz] |
---|---|---|---|
#T1 | 1.5 | CO | 75% |
#T2 | 2.5 | AMP | 86% |
#T3 | 3 | MP | 85% |
#T4 | 3 | ROM | 92% |
#T5 | 3 | AMP | 91% |
FOV | SOV | |||||
---|---|---|---|---|---|---|
Test ID | Impairment | Points | Left Turn | Right Turn | Left Turn | Right Turn |
#T1 | CO | 1.5 | 19.7 | 20.5 | 2.4 | 4.3 |
#T2 | AMP | 2.5 | 72 | 40.3 | 22 | 6.9 |
#T5 | AMP | 3 | 64.8 | 45.5 | 48.3 | 29.0 |
Range (Min–Max) [°] | Average Angular Speed [°/s] | |||||
---|---|---|---|---|---|---|
Test ID | Impairment | Points | Left Turn | Right Turn | Left Turn | Right Turn |
#T1 | CO | 1.5 | 159 | 143 | 95 | 94 |
#T2 | AMP | 2.5 | 226 | 186 | 145 | 112 |
#T5 | AMP | 3 | 198 | 208 | 124 | 128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romagnoli, C.; Caprioli, L.; Cariati, I.; Campoli, F.; Edriss, S.; Frontuto, C.; Galvan, A.; Giugliano, M.; Martinez, E.R.; Padua, E.; et al. Use of an IMU Device to Assess the Performance in Swimming and Match Positions of Impaired Water Polo Athletes: A Pilot Study. Appl. Sci. 2025, 15, 8826. https://doi.org/10.3390/app15168826
Romagnoli C, Caprioli L, Cariati I, Campoli F, Edriss S, Frontuto C, Galvan A, Giugliano M, Martinez ER, Padua E, et al. Use of an IMU Device to Assess the Performance in Swimming and Match Positions of Impaired Water Polo Athletes: A Pilot Study. Applied Sciences. 2025; 15(16):8826. https://doi.org/10.3390/app15168826
Chicago/Turabian StyleRomagnoli, Cristian, Lucio Caprioli, Ida Cariati, Francesca Campoli, Saeid Edriss, Cristiana Frontuto, Antonella Galvan, Mario Giugliano, Eva Ruiz Martinez, Elvira Padua, and et al. 2025. "Use of an IMU Device to Assess the Performance in Swimming and Match Positions of Impaired Water Polo Athletes: A Pilot Study" Applied Sciences 15, no. 16: 8826. https://doi.org/10.3390/app15168826
APA StyleRomagnoli, C., Caprioli, L., Cariati, I., Campoli, F., Edriss, S., Frontuto, C., Galvan, A., Giugliano, M., Martinez, E. R., Padua, E., Annino, G., & Bonaiuto, V. (2025). Use of an IMU Device to Assess the Performance in Swimming and Match Positions of Impaired Water Polo Athletes: A Pilot Study. Applied Sciences, 15(16), 8826. https://doi.org/10.3390/app15168826