Melampyrum nemorosum L. Herb Extracts: Phytochemical Composition and Screening of Pharmacological Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and General Experiments
2.2. Plant Raw Materials
2.3. Extract Preparations
2.4. Phytochemical Research
2.5. Pharmacological Research of the Extracts
2.5.1. Anti-Inflammatory Activity
2.5.2. Wound Healing and Haemostatic Activity
2.5.3. Antimicrobial and Antifungal Activity
2.6. Statistical Analysis
3. Results
3.1. Phytochemical Research
3.2. Quality Indicators of the Obtained Extracts
3.3. Anti-Inflammatory Activity
3.4. Wound Healing and Hemostatic Activity
3.5. Antimicrobial and Antifungal Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Flora Online Data. Melampyrum L. Sp. Pl.: 605 (1753). 2024. Available online: https://www.worldfloraonline.org/taxon/wfo-4000023568;jsessionid=A8D4F2BAB58F0D5056CDCB08985D7724 (accessed on 7 July 2025).
- International Plant Names Index. Melampyrum L. 2: 605 (1753). 2025. Available online: https://ipni.org/n/30013909-2 (accessed on 7 July 2025).
- Zerova, D. Plant Identification Guide to Ukraine; Urozhay: Kyiv, Ukraine, 1965. [Google Scholar]
- Grodzinsky, A.M. Medicinal Plants: Encyclopedic Guide; Ukrainian Encyclopedia Named After M. P.; Bazhana: Kyiv, Ukraine, 1990. [Google Scholar]
- Munteanu, M.F.; Vlase, L. The Determination of the Iridoids from the Melampyrum Species by Modern Chromatographic Methods. Not. Bot. Hort. Agrobot. Cluj 2011, 39, 79–83. [Google Scholar] [CrossRef]
- Fási, L.; Wéber, E.; Czigle, S.; Sztojkov-Ivanov, A.; Liktor-Busa, E.; Blunden, G.; Hohmann, J.; Háznagy-Radnai, E. Isolation of Iridoids and Flavones from the Anti-Inflammatory, Antioxidative and Antimicrobial Extract of Melampyrum barbatum. Planta Med. 2015, 81, PW_60. [Google Scholar] [CrossRef]
- Korkotian, E.; Botalova, A.; Odegova, T.; Galishevskaya, E.; Skryabina, E.; Segal, M. Complex Effects of Aqueous Extract of Melampyrum Pratense and of Its Flavonoids on Activity of Primary Cultured Hippocampal Neurons. J. Ethnopharmacol. 2015, 163, 220–228. [Google Scholar] [CrossRef]
- Háznagy-Radnai, E.; Wéber, E.; Czigle, S.; Berkecz, R.; Csedő, K.; Hohmann, J. Identification of Iridoids, Flavonoids and Triterpenes from the Methanolic Extract of Melampyrum bihariense A. Kern. and the Antioxidant Activity of the Extract. Chromatographia 2014, 77, 1153–1159. [Google Scholar] [CrossRef]
- Vogl, S.; Atanasov, A.G.; Binder, M.; Bulusu, M.; Zehl, M.; Fakhrudin, N.; Heiss, E.H.; Picker, P.; Wawrosch, C.; Saukel, J.; et al. The Herbal Drug Melampyrum Pratense L. (Koch): Isolation and Identification of Its Bioactive Compounds Targeting Mediators of Inflammation. Evid.-Based Complement. Altern. Med. 2013, 2013, 395316. [Google Scholar] [CrossRef]
- Galishevskaya, E.E.; Petrichenko, V.M. Phenolic Compounds from Two Melampyrum Species. Pharm. Chem. J. 2010, 44, 497–500. [Google Scholar] [CrossRef]
- Pagani, F.; Romussi, G. [Flavonoids of Melampyrum nemorosum L. (Scrophulariaceae)]. Boll. Chim. Farm. 1971, 110, 695–703. [Google Scholar] [PubMed]
- Kotov, M. Genus Melampyrum L. Flora URSR; AN URSR: Kyiv, Ukraine, 1960; Volume 9. [Google Scholar]
- Háznagy-Radnaia, E.; Fásia, L.; Wéberb, E.; Pinkec, G.; Királyd, G.; Sztojkov-Ivanove, A.; Gáspáre, R.; Hohmanna, J. Anti-Inflammatory Activity of Melampyrum barbatum and Isolation of Iridoid and Flavonoid Compounds. Nat. Prod. Commun. 2018, 13, 235–236. [Google Scholar] [CrossRef]
- Munteanu, F. Antimicrobial Activity of Melampyrum cristatum, Melampyrum bihariense and Melampyrum arvense Tinctures. Afr. J. Pharm. Pharmacol. 2012, 6, 2808–2812. [Google Scholar] [CrossRef][Green Version]
- Štajner, D.; Popović, B.M.; Boža, P.; Kapor, A. Antioxidant Capacity of Melampyrum barbatum—Weed and Medicinal Plant. Phytother. Res. 2009, 23, 1006–1010. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022. [Google Scholar]
- Kovalenko, V.N. Compendium 2024. Medicines; MORION: Kyiv, Ukraine, 2024. [Google Scholar]
- EMEA/HMPC/246816/2005; Guideline on Good Agricultural and Collection Practice (GACP) for Starting Materials of Herbal Origin. European Medicines Agency: Amsterdam, The Netherlands, 2006.
- Dobrochaeva, D.N.; Kotov, M.I.; Prokudin, Y.N.; Barbarich, A.I. Key to Higher Plants of Ukraine; Naukova Dumka: Kyiv, Ukraine, 1999. [Google Scholar]
- Maliuvanchuk, S.; Grytsyk, A.; Popadynets, O.; Kotyk, T.; Raal, A.; Koshovyi, O. Ajuga reptans L. Herb Extracts: Phytochemical Composition and Pharmacological Activity Screening. Plants 2025, 14, 219. [Google Scholar] [CrossRef]
- Hordiei, K.; Gontova, T.; Trumbeckaite, S.; Yaremenko, M.; Raudone, L. Phenolic Composition and Antioxidant Activity of Tanacetum Parthenium Cultivated in Different Regions of Ukraine: Insights into the Flavonoids and Hydroxycinnamic Acids Profile. Plants 2023, 12, 2940. [Google Scholar] [CrossRef]
- Vronska, L.V. Chromatographic Profile of Hydroxycinnamic Acids of Dry Extract of Blueberry Shoots. Pharm. J. 2019, 4, 5–18. [Google Scholar] [CrossRef]
- Matiusha, K.; Grytsyk, A.; Hrytsyk, R.; Raal, A.; Koshovyi, O. Phytochemical Research and Screening of Pharmacological Activity in Eryngium planum L. Herb Extracts. Appl. Sci. 2025, 15, 1433. [Google Scholar] [CrossRef]
- Ukrainian Scientific Pharmacopoeial Center of Drugs Quality. State Pharmacopoeia of Ukraine, 2nd ed.; Ukrainian Scientific Pharmacopoeial Center of Drugs Quality: Kharkiv, Ukraine, 2015. [Google Scholar]
- The Law of Ukraine “On the Protection of Animals from Cruel Treatment” Dated 12/15/2009. Available online: https://zakon.rada.gov.ua/laws/show/3447-15#Text (accessed on 7 July 2024).
- Council of the European Union. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes; Council of the European Union: Brussels, Belgium, 1999.
- Stefanov, O.V. Preclinical Studies of Drugs; Avicenna: Kyiv, Ukraine, 2001. [Google Scholar]
- Herrera-Ru, M.; Rojas-Bibr, M.G.; Nunez, Z.; Dominguez-, B.E.; Aviles-Fol, M.; Fuentes-Ma, M.; Tortoriell, J.; Zamilpa, A. Anti-Inflammatory Extracts and Coumaroyl Ursolic Acid Derivatives from Distictis Buccinatoria. Int. J. Pharmacol. 2015, 11, 852–857. [Google Scholar] [CrossRef]
- Hrytsyk, Y.; Koshovyi, O.; Lepiku, M.; Jakštas, V.; Žvikas, V.; Matus, T.; Melnyk, M.; Grytsyk, L.; Raal, A. Phytochemical and Pharmacological Research in Galenic Remedies of Solidago canadensis L. Herb. Phyton 2024, 93, 2303–2315. [Google Scholar] [CrossRef]
- Yakovleva, L.V.; Tkacheva, O.V.; Butko, Y.O.; Laryanovska, Y.B. Experimental Study of New Drugs for Local Treatment of Wounds; Publishing House of the National University of Pharmacy: Kharkiv, Ukraine, 2013. [Google Scholar]
- Kickler, T.S. Dr. William, W. Duke: Pioneer in Platelet Research. J. Am. Med. Assoc. 2009, 301, 2267–2269. [Google Scholar] [CrossRef] [PubMed]
- Brinkhous, K.M. W. W. Duke and His Bleeding Time Test: A Commentary on Platelet Function. J. Am. Med. Assoc. 1983, 250, 1210–1214. [Google Scholar] [CrossRef]
- Watson, S.I.; Gkini, E.; Bishop, J.; Scandrett, K.; Napit, I.; Lilford, R.J. Modelling Wound Area in Studies of Wound Healing Interventions. BMC Med. Res. Methodol. 2024, 24, 206. [Google Scholar] [CrossRef]
- Danko, G.V. Proving Characteristics of a Medicinal Preparation Based on Mint Thistle With Plant Sources Used In The Treatment of Animals with Wounds. Sci. Bull. Lviv. Natl. Univ. Vet. Med. Biotechnol. Named After S.Z. Gzhytsky 2010, 12, 48–53. [Google Scholar]
- Bergey, D.H. Bergey’s Manual of Determinative Bacteriology; Williams & Wilkins Co.: Baltimore, MD, USA, 1957. [Google Scholar]
- Kutsyk, R. Study of Antimicrobial Activity of Medicinal Plants of the Carpathian Region against Antibiotic-Resistant Clinical Strains of Staphylococci. Galician Med. Her. 2005, 12, 52–58. [Google Scholar]
- Koshovyi, O.; Hrytsyk, Y.; Perekhoda, L.; Suleiman, M.; Jakštas, V.; Žvikas, V.; Grytsyk, L.; Yurchyshyn, O.; Heinämäki, J.; Raal, A. Solidago canadensis L. Herb Extract, Its Amino Acids Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological, Molecular Docking and Pharmacological Research. Pharmaceutics 2025, 17, 407. [Google Scholar] [CrossRef]
- Lapach, S.N.; Chubenko, A.V.; Babich, P.N. Statistical Methods in Biomedical Research Using Excel; MORION: Kyiv, Ukraine, 2000. [Google Scholar]
- Lee Rodgers, J.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef]
- Chao, P.; Hsu, C.; Yin, M. Anti-Inflammatory and Anti-Coagulatory Activities of Caffeic Acid and Ellagic Acid in Cardiac Tissue of Diabetic Mice. Nutr. Metab. 2009, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M.; Alam, S.; Hassan, M.I.; Pasupuleti, V.R. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12, 860508. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Y.; Zhou, J.; Cai, Y.; Li, Z.; Sun, J.; Xie, Z.; Hao, G. Metabolic Effects of Quercetin on Inflammatory and Autoimmune Responses in Rheumatoid Arthritis Are Mediated through the Inhibition of JAK1/STAT3/HIF-1α Signaling. Mol. Med. 2024, 30, 170. [Google Scholar] [CrossRef]
- Forouzanfar, F.; Sahranavard, T.; Tsatsakis, A.; Iranshahi, M.; Rezaee, R. Rutin: A Pain-Relieving Flavonoid. Inflammopharmacol 2025, 33, 1289–1301. [Google Scholar] [CrossRef]
- Lee, G.B.; Kim, Y.; Lee, K.E.; Vinayagam, R.; Singh, M.; Kang, S.G. Anti-Inflammatory Effects of Quercetin, Rutin, and Troxerutin Result From the Inhibition of NO Production and the Reduction of COX-2 Levels in RAW 264.7 Cells Treated with LPS. Appl. Biochem. Biotechnol. 2024, 196, 8431–8452. [Google Scholar] [CrossRef] [PubMed]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef]
- Elshahid, Z.A.; Salama, A.; Gouhar, S.A. Assessment of the Synergistic Anti-Inflammatory Effect of Naringin/Sulindac for the Treatment of Osteoarthritis: In Vitro and in Vivo. Adv. Tradit. Med. (ADTM) 2024, 24, 265–283. [Google Scholar] [CrossRef]
- Solanki, S.; Vig, H.; Khatri, N.; Singh, B.P.; Khan, M.S.; Devgun, M.; Wal, P.; Wal, A. Naringenin: A Promising Immunomodulator for Anti-Inflammatory, Neuroprotective and Anti-Cancer Applications. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2025, 24, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef]
- Siddiquee, R.; Mahmood, T.; Ansari, V.A.; Ahsan, F.; Bano, S.; Ahmad, S. Apigenin Unveiled: An Encyclopedic Review of Its Preclinical and Clinical Insights. Discov. Plants 2025, 2, 11. [Google Scholar] [CrossRef]
- Bagdas, D.; Gul, N.Y.; Topal, A.; Tas, S.; Ozyigit, M.O.; Cinkilic, N.; Gul, Z.; Etoz, B.C.; Ziyanok, S.; Inan, S.; et al. Pharmacologic Overview of Systemic Chlorogenic Acid Therapy on Experimental Wound Healing. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014, 387, 1101–1116. [Google Scholar] [CrossRef]
- Romana-Souza, B.; Dos Santos, J.S.; Monte-Alto-Costa, A. Caffeic Acid Phenethyl Ester Promotes Wound Healing of Mice Pressure Ulcers Affecting NF-κB, NOS2 and NRF2 Expression. Life Sci. 2018, 207, 158–165. [Google Scholar] [CrossRef]
- Song, H.S.; Park, T.W.; Sohn, U.D.; Shin, Y.K.; Choi, B.C.; Kim, C.J.; Sim, S.S. The Effect of Caffeic Acid on Wound Healing in Skin-Incised Mice. Korean J. Physiol. Pharmacol. 2008, 12, 343. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Hu, J.; Guo, X.; Zhou, S.; Yang, Q.; Du, Y.; Jin, Y.; Liu, G.; Peng, Y. Quercetin and Its Derivatives for Wound Healing in Rats/Mice: Evidence from Animal Studies and Insight into Molecular Mechanisms. Int. Wound J. 2024, 21, e14389. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin Accelerated Cutaneous Wound Healing in Rats by Increasing Levels of VEGF and TGF-Β1. Indian J. Exp. Biol. 2016, 54, 187–195. [Google Scholar]
- Carvalho, M.T.B.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Barreto, R.S.S. Wound Healing Properties of Flavonoids: A Systematic Review Highlighting the Mechanisms of Action. Phytomedicine 2021, 90, 153636. [Google Scholar] [CrossRef]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Med. Cell Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef] [PubMed]
- Frenț, O.-D.; Stefan, L.; Morgovan, C.M.; Duteanu, N.; Dejeu, I.L.; Marian, E.; Vicaș, L.; Manole, F. A Systematic Review: Quercetin—Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int. J. Mol. Sci. 2024, 25, 12091. [Google Scholar] [CrossRef] [PubMed]
- Zawani, M.; Fauzi, M. Epigallocatechin Gallate: The Emerging Wound Healing Potential of Multifunctional Biomaterials for Future Precision Medicine Treatment Strategies. Polymers 2021, 13, 3656. [Google Scholar] [CrossRef]
- Zheng, X.-Q.; Zhang, X.-H.; Gao, H.-Q.; Huang, L.-Y.; Ye, J.-J.; Ye, J.-H.; Lu, J.-L.; Ma, S.-C.; Liang, Y.-R. Green Tea Catechins and Skin Health. Antioxidants 2024, 13, 1506. [Google Scholar] [CrossRef]
- Tajammal, S.A.; Coffey, A.; Tan, S.P. Green Tea Polyphenols in Wound Healing: Therapeutic Mechanisms, Potential Applications and Challenges in Commercial Use for Diabetic Wound Healing. Processes 2025, 13, 653. [Google Scholar] [CrossRef]
- Soyocak, A.; Kurt, H.; Cosan, D.T.; Saydam, F.; Calis, I.; Kolac, U.; Koroglu, Z.O.; Degirmenci, I.; Mutlu, F.S.; Gunes, H. Tannic Acid Exhibits Anti-Inflammatory Effects on Formalin-Induced Paw Edema Model of Inflammation in Rats. Hum. Exp. Toxicol. 2019, 38, 1296–1301. [Google Scholar] [CrossRef]
- Castañeda-Corral, G.; Cedillo-Cortezano, M.; Petricevich, V.L. Parallel In Vitro and In Silico Studies of the Anti-Inflammatory Activity of Bioactive Compounds Found in Different Ethanolic Extracts of Bracts from B. x Buttiana (Var. Rose): A Comparative Analysis. Pharmaceuticals 2025, 18, 821. [Google Scholar] [CrossRef]
- Lin, W.-C.; Deng, J.-S.; Huang, S.-S.; Wu, S.-H.; Lin, H.-Y.; Huang, G.-J. Evaluation of Antioxidant, Anti-Inflammatory and Anti-Proliferative Activities of Ethanol Extracts from Different Varieties of Sanghuang Species. RSC Adv. 2017, 7, 7780–7788. [Google Scholar] [CrossRef]
- Sepp, J.; Koshovyi, O.; Jakstas, V.; Žvikas, V.; Botsula, I.; Kireyev, I.; Tsemenko, K.; Kukhtenko, O.; Kogermann, K.; Heinämäki, J.; et al. Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria chamomilla L.) Flowers. Plants 2024, 13, 350. [Google Scholar] [CrossRef]
- Xu, J.; Hu, H.; Jiang, H.; Wei, Q.; Zhang, H.; Lu, Q. The Therapeutic Mechanisms of Quercetin on Inflammatory Diseases: An Update. Inflammopharmacol 2025, 33, 3015–3049. [Google Scholar] [CrossRef]
- Ouyang, X.-L.; Shu, L.-Y.; Qin, X.-Y.; Yang, L. Evaluations of Hemostatic Activity of Ethanol Extract of Euonymus Fortunei Aerial Parts. J. Pharm. Res. Int. 2021, 32, 8–15. [Google Scholar] [CrossRef]
- Li, H.-F.; Feng, H.; Wang, Y.; Pan, Z.-C.; Yin, L.; Qiu, H.-L.; Qiao, H.; Zhao, J.-Q.; Xia, X.-Y.; Hou, J.-C.; et al. Evaluation of Hemostatic, Anti-Inflammatory, Wound Healing, Skin Irritation and Allergy, and Antimicrobial Properties of Active Fraction from the Ethanol Extract of Chromolaena odorata (L.) R.M. King & H. Rob. J. Ethnopharmacol. 2024, 331, 118330. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkhel, S.; Ghosh, K.; Dhar, S.; Karar, S.; Roychowdhury, V. Plant-Derived Hemostats. Rev. Bras. Farmacogn. 2023, 33, 259–271. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Torbati, M.; Mahmoudi, J.; Valizadeh, H. Medicinal Plants as Potential Hemostatic Agents. J. Pharm. Pharm. Sci. 2020, 23, 10–23. [Google Scholar] [CrossRef]
- Zishan, S.A.; Uddin, M.M.; Mohammad, M.; Asadul Karim Azad, S.M.; Naima, J.; Ibban, S.S.; Saiful Islam Arman, M. Costus Speciosus Leaf and Seed Extracts for Wound Healing: A Comparative Evaluation Using Mice Excision Wound Models. Clin. Phytosci. 2024, 10, 5. [Google Scholar] [CrossRef]
- Sharma, S.; Sharmaa, M.C.; Kohlib, D.V. Wound Healing Activity and Formulation of Ether-Benzene 95% Ethanol Extract of Herbal Drug Madhuca Longifolia Leaves in Albino Rats. J. Optoelectron. Biomed. Mater. 2010, 1, 13–15. [Google Scholar]
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal Plants and Their Components for Wound Healing Applications. Future J. Pharm. Sci. 2021, 7, 53. [Google Scholar] [CrossRef]
- Vitale, S.; Colanero, S.; Placidi, M.; Di Emidio, G.; Tatone, C.; Amicarelli, F.; D’Alessandro, A.M. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. Molecules 2022, 27, 3566. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef] [PubMed]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Da Silva, A.P.G.; Sganzerla, W.G.; John, O.D.; Marchiosi, R. A Comprehensive Review of the Classification, Sources, Biosynthesis, and Biological Properties of Hydroxybenzoic and Hydroxycinnamic Acids. Phytochem. Rev. 2025, 24, 1061–1090. [Google Scholar] [CrossRef]
- López De Felipe, F. Revised Aspects into the Molecular Bases of Hydroxycinnamic Acid Metabolism in Lactobacilli. Antioxidants 2023, 12, 1294. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | Content in the Liquid Extract, µg/mL | |
---|---|---|---|
MN40 | MN70 | ||
Phenolic acids | |||
1 | Hydroxyphenylacetic acid | 54.49 ± 3.82 | 53.64 ± 3.79 |
2 | Benzoic acid | 1294.43 ± 76.17 | 1274.69 ± 99.35 |
Hydroxycinnamic acids | |||
3 | Chlorogenic acid * | 203.66 ± 8.05 | 218.74 ± 14.79 |
4 | Caffeic acid * | 157.79 ± 7.37 | 166.68 ± 7.82 |
5 | p-Coumaric acid * | 696.42 ± 45.86 | 810.55 ± 53.40 |
6 | trans-Ferulic acid * | 25.66 ± 2.18 | 32.14 ± 2.69 |
7 | trans-Cinnamic acid * | 399.40 ± 18.97 | 524.36 ± 31.04 |
Flavonoids | |||
8 | Rutin * | 4625.30 ± 183.32 | 5009.22 ± 144.72 |
9 | Quercetin-3-O-glucoside | 532.21 ± 2.18 | 517.76 ± 3.18 |
10 | Naringin * | 927.24 ± 40.13 | 1042.37 ± 55.72 |
11 | Neohesperidin * | 843.98 ± 34.40 | 993.36 ± 31.04 |
12 | Quercetin * | 1217.03 ± 45.12 | 1416.42 ± 52.67 |
13 | Naringenin * | 475.70 ± 18.02 | 596.21 ± 22.61 |
14 | Apigenin * | 145.78 ± 7.64 | 189.17 ± 9.90 |
15 | Rhamnetin * | 917.69 ± 38.77 | 1026.85 ± 43.38 |
16 | Kaempferol * | 345.48 ± 15.15 | 414.50 ± 18.21 |
Tannin metabolites | |||
17 | Catechin * | 266.99 ± 14.06 | 217.39 ± 11.49 |
18 | Epicatechin | 567.57 ± 28.53 | 548.80 ± 27.74 |
19 | Gallocatechin * | 165.71 ± 16.11 | 192.83 ± 20.04 |
Content of compound groups in the liquid extract, % (spectrophotometry) | |||
Total polyphenols (%) * | 4.73 ± 0.20 | 6.77 ± 0.21 | |
Flavonoids (%) * | 0.86 ± 0.07 | 1.01 ± 0.06 |
Quality Indicators | Extracts | |||||
---|---|---|---|---|---|---|
MN40 | MN70 | |||||
Batch 001 | Batch 002 | Batch 003 | Batch 001 | Batch 002 | Batch 003 | |
Identification A (description) | Meets specs | Meets specs | Meets specs | Meets specs | Meets specs | Meets specs |
Identification B (main phenolic compounds (TLC)) | Meets specs | Meets specs | Meets specs | Meets specs | Meets specs | Meets specs |
Quantitative content of flavonoids, % | 0.86 | 0.85 | 0.81 | 1.01 | 0.98 | 1.03 |
Heavy metals (not more than 0.002%) | Meets specs | Meets specs | Meets specs | Meets specs | Meets specs | Meets specs |
Dry residue (not less than 12.0%) | 13.65 | 13.90 | 13.22 | 12.22 | 12.08 | 12.03 |
Ethanol content, % | 41 | 39 | 40 | 68 | 71 | 72 |
Microbiological purity | Meets specs | Meets specs | Meets specs | Meets specs | Meets specs | Meets specs |
Group of Animals (n = 6) | Dose, mg/kg | Rat Paw Volume Increase, %: | Inflammatory Response Suppression Index, % | ||||
---|---|---|---|---|---|---|---|
In 1 h | In 3 h | In 5 h | In 1 h | In 3 h | In 5 h | ||
Group I (MN40) | 100 | 29.45 ± 1.57 ** | 32.13 ± 3.33 * | 29.31 ± 5.92 | 15.89 | 33.47 | 35.36 |
Group II (MN70) | 100 | 24.95 ± 3.12 | 27.88 ± 1.98 * | 24.38 ± 1.46 * | 28.82 | 42.25 | 46.24 |
Group III (diclofenac sodium) | 8 | 21.29 ± 2.23 * | 20.18 ± 4.51 * | 17.82 ± 4.29 * | 39.25 | 58.21 | 60.69 |
Group IV (quercetin) | 5 | 24.51 ± 2.20 * | 29.15 ± 1.46 * | 28.43 ± 2.3 * | 30.07 | 39.65 | 37.30 |
Group V (control animals) | - | 35.041 ± 4.14 | 48.30 ± 5.86 | 45.35 ± 6.62 | - | - | - |
Group of Animals | Bleeding Duration, s, n = 6 | Reduction in Bleeding Time, Relative to the Control Group, % |
---|---|---|
Group I (MN40) | 89.50 ± 13.48 * | 38.49 |
Group II (MN70) | 79.33 ± 9.28 * | 45.48 |
Group III (liquid extract of Polygonum hydropiper) | 61.83 ± 3.38 * | 57.51 |
Group IV (control animals) | 145.5 ± 12.24 | - |
Group of Animals | Percentage (%) of Wound Area Healing Compared to the Initial State in Dynamics (Days) | |||||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | |
Group I (MN40) | 5.93 * | 17.78 * | 34.44 * | 57.04 * | 77.04 * | 92.96 * | 98.89 * | 100 * |
Group II (MN70) | 4.81 * | 19.26 * | 40.37 * | 71.85 * | 89.63 * | 97.78 * | 100 * | 100 * |
Group II (Rotokan) | 5.19 * | 18.52 * | 30.37 * | 53.17 * | 75.93 * | 87.78 * | 95.93 * | 100 * |
Group IV (control animals) | 2.59 | 7.78 | 28.52 | 37.41 | 51.11 | 73.33 | 85.93 | 96.30 |
Types of Microorganisms | Clinical Material | Resistance | Diameters of Growth Inhibition Zones, mm | |||
---|---|---|---|---|---|---|
Reference Extractant | MN40 | MN70 | ||||
Ethanol 40% | Ethanol 70% | |||||
Staphylococci | ||||||
Staphylococcus aureus | ATCC 25923 | S | 13.00 ± 0.54 | 18.10 ± 1.50 | Growth | 22.17 ± 1.15 * |
Staphylococcus aureus | Pharynx | BSSA | Growth | 20.35 ± 1.05 | 11.63 ± 0.08 * | 32.02 ± 1.60 * |
Staphylococcus aureus | Skin | S | Growth | 16.68 ± 0.49 | 10.32 ± 0.60 * | 24.71 ± 1.55 * |
Staphylococcus aureus | Wound | BSSA, MLS | Growth | 22.06 ± 0.82 | 12.59 ± 0.57 * | 33.00 ± 3.67 * |
Staphylococcus aureus | Wound | MRSA | Growth | 16.62 ± 0.94 | 10.57 ± 0.50 * | 23.99 ± 1.34 * |
Staphylococcus epidermidis | Skin | MLS, Ind+ | Growth | 22.75 ± 1.01 | Growth | 22.96 ± 0.57 |
Staphylococcus haemolyticus | Sputum | MRSH | Growth | 14.25 ± 0.49 | Growth | 22.99 ± 2.17 * |
Enterococci | ||||||
Enterococcus faecalis | Urethra | Tet, FQin | Growth | 11.73 ±0.43 | 11.92 ± 0.64 * | 21.12 ± 1.29 * |
Enterococcus faecalis | Urethra | Tet, FQin | Growth | Growth | 13.99 ± 1.33 * | 16.80 ± 0.54 * |
β-Haemolytic streptococci | ||||||
Streptococcus pyogenes (β Str A) | Pharynx | S | 14.60 ± 2.28 | 16.39 ± 0.82 | Growth | 14.73 ± 2.08 |
Streptococcus pyogenes (β Str A) | Pharynx | S | Growth | 10.43 ± 0.42 | Growth | 13.45 ± 1.30 * |
Streptococcus dysgalactiae (β Str G) | Pharynx | S | Growth | Growth | Growth | 12.18 ± 1.17 * |
Streptococcus agalactiae (β Str B) | Vaginal mucus | S | Growth | 17.45 ± 1.29 | Growth | 18.89 ± 2.32 * |
α-Haemolytic streptococci | ||||||
Streptococcus anginosus | Pharynx | AMO, Tet, MLS | 15.51 ± 1.28 | 13.63 ± 1.20 | Growth | 14.59 ± 0.76 |
Streptococcus gordonii | Oral cavity | S | 11.53 ± 0.98 | 13.04 ± 0.21 | Growth | 13.07 ± 0.67 |
Streptococcus oralis | Oral cavity | S | Growth | 14.67 ± 0.56 | 9.67 ± 0.63 * | 20.44 ± 1.07 * |
Streptococcus sanguinis | Oral cavity | S | Growth | 19.54 ± 0.87 | Growth | 20.65 ± 1.02 |
Streptococcus pneumonia | Sputum | S | Growth | Growth | Growth | Growth |
Streptococcus pneumonia | Sputum | β-Lac, Tet | Growth | Growth | Growth | 17.40 ± 0.21 * |
Enterobacteria | ||||||
Escherichia coli | Wound | S | Growth | 8.70 ± 0.52 | Growth | Growth |
Escherichia coli | Wound | S | Growth | Growth | Growth | 12.89 ± 0.56 * |
Escherichia coli | Wound | AMO Tet, FQin | Growth | Growth | Growth | 11.79 ± 0.69 * |
Escherichia coli hly+ | Faecal sample | AMO, MLs | Growth | Growth | Growth | 13.20 ± 0.95 * |
Escherichia fergusonii | Faecal sample | ESβL | Growth | Growth | Growth | Growth |
Providencia rettgeri | Urine sample | ESβL | Growth | Growth | Growth | Growth |
Morganella morganii | Urine sample | ESβL | Growth | Growth | Growth | Growth |
Non-fermenting bacteria | ||||||
Pseudomonas aureginosa | Wound | ESβL | Growth | Growth | Growth | Growth |
Pseudomonas aureginosa | Pus from the wound | ESβL | Growth | Growth | Growth | Growth |
Acinetobacter baumani | Sputum | ESβL | Growth | Growth | Growth | 10.61 ± 1.03 * |
Bacilli | ||||||
Bacilus subtilus | ATCC 6051 | S | Growth | 11.89 ± 0.40 | Growth | 17.75 ± 1.37 * |
Fungi | ||||||
Candida albicans | Oral cavity | FCZ-R | Growth | 16.35 ± 1.3 | Growth | 22.22 ± 1.25 * |
Candida albicans | Sputum | FCZ-R | Growth | 21.86 ± 1.22 | Growth | 31.64 ± 2.24 * |
Candida albicans | Urine sample | FCZ-R | Growth | 10.82 ± 0.34 | Growth | 15.53 ± 0.64 * |
Candida albicans | Oral cavity | FCZ-S | Growth | 11.15 ± 0.58 | Growth | 15.24 ± 0.29 * |
Candida tropicalis | Sputum | FCZ-R | Growth | 10.02 ± 0.44 | Growth | 16.34 ± 0.80 * |
Candida glabrata | FRS 585 | FCZ-S | Growth | 19.59 ± 1.89 | Growth | 21.29 ± 1.20 |
Candida lusitaniae | Oral cavity | FCZ-R | Growth | 10.13 ± 1.47 | Growth | 19.95 ± 0.97 * |
Candida lusitaniae | Oral cavity | FCZ-S | Growth | 20.96 ± 1.22 | Growth | 26.88 ± 0.55 * |
Candida lipolytica | Oral cavity | FCZ-R | Growth | 10.29 ± 0.81 | Growth | 15.16 ± 0.60 * |
Candida kefyr | Oral cavity | FCZ-S | 10.59 ± 0.99 | 15.60 ± 0.43 | Growth | 26.55 ± 2.30 * |
Aspergillus fumigatus | Sputum | FCZ-R | Growth | Growth | Growth | 17.04 ± 3.20 * |
Rhodotorula mucilaginosa | Pus from the wound | FCZ-S | Growth | 25.68 ± 0.99 | Growth | 32.32 ± 1.25 * |
Geotrichum candidum | Faecal sample | FCZ-S | Growth | 10.73 ± 0.59 | Growth | 20.22 ± 0.87 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reznik, V.; Grytsyk, A.; Hrytsyk, R.; Kutsyk, R.; Yurchyshyn, O.; Kaplaushenko, A.; Raal, A.; Koshovyi, O. Melampyrum nemorosum L. Herb Extracts: Phytochemical Composition and Screening of Pharmacological Activities. Appl. Sci. 2025, 15, 8776. https://doi.org/10.3390/app15168776
Reznik V, Grytsyk A, Hrytsyk R, Kutsyk R, Yurchyshyn O, Kaplaushenko A, Raal A, Koshovyi O. Melampyrum nemorosum L. Herb Extracts: Phytochemical Composition and Screening of Pharmacological Activities. Applied Sciences. 2025; 15(16):8776. https://doi.org/10.3390/app15168776
Chicago/Turabian StyleReznik, Victoria, Andriy Grytsyk, Roman Hrytsyk, Roman Kutsyk, Oksana Yurchyshyn, Andriy Kaplaushenko, Ain Raal, and Oleh Koshovyi. 2025. "Melampyrum nemorosum L. Herb Extracts: Phytochemical Composition and Screening of Pharmacological Activities" Applied Sciences 15, no. 16: 8776. https://doi.org/10.3390/app15168776
APA StyleReznik, V., Grytsyk, A., Hrytsyk, R., Kutsyk, R., Yurchyshyn, O., Kaplaushenko, A., Raal, A., & Koshovyi, O. (2025). Melampyrum nemorosum L. Herb Extracts: Phytochemical Composition and Screening of Pharmacological Activities. Applied Sciences, 15(16), 8776. https://doi.org/10.3390/app15168776