Total Synthesis of Surfactant-Mimetic Nanocolloids via Regioselective Silica Deposition on Bottlebrush Polymers
Abstract
1. Introduction
2. Methods
2.1. Materials
2.2. Synthesis
2.2.1. Synthesis of Macromonomer Norbornenyl-Terminated Polystyrene (NB-PSt) [42] (Figure S1a)
2.2.2. Synthesis of Bottlebrush Polymers (BBPs) via Sequential ROMP (Figure S1b)
2.2.3. Regioselective Deposition of Silica on BBPs
2.3. Characterizations
3. Results and Discussion
3.1. Synthesis of Bottlebursh Polymer
3.2. Synthesis of SNP-b-P (NB-PSt) SMNCs
3.3. Self-Assembly of SMNCs in Selective Solvent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Wu, C.; Chen, J.; Tang, J. Colloidal Self-Assembly: From Passive to Active Systems. Angew. Chem. Int. Ed. 2023, 63, e202313885. [Google Scholar] [CrossRef]
- Haran, G.; Chuntonov, L. Artificial plasmonic molecules and their interaction with real molecules. Chem. Rev. 2018, 118, 5539–5580. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Partridge, B.E.; Mirkin, C.A. Engineering Anisotropy into Organized Nanoscale Matter. Chem. Rev. 2024, 124, 11063–11107. [Google Scholar] [CrossRef]
- Hueckel, T.; Hocky, G.M.; Sacanna, S. Total synthesis of colloidal matter. Nat. Rev. Mater. 2021, 6, 1053–1069. [Google Scholar] [CrossRef]
- Glotzer, S.C.; Solomon, M.J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Tikhomirov, G.; Hoogland, S.; Lee, P.E.; Fischer, A.; Sargent, E.H.; Kelley, S.O. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol. 2011, 6, 485–490. [Google Scholar] [CrossRef]
- Tan, S.J.; Campolongo, M.J.; Luo, D.; Cheng, W. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Liu, H.; Zhang, S.; Yang, Y.; Zhang, Y.; Lu, Z.; Kumacheva, E.; Nie, Z. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science 2020, 369, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Breed, D.R.; Manoharan, V.N.; Feng, L.; Hollingsworth, A.D.; Weck, M.; Pine, D.J. Colloids with valence and specific directional bonding. Nature 2012, 491, 51–55. [Google Scholar] [CrossRef]
- Manoharan, V.N.; Elsesser, M.T.; Pine, D.J. Dense packing and symmetry in small clusters of microspheres. Science 2003, 301, 483–487. [Google Scholar] [CrossRef]
- Liu, K.; Nie, Z.H.; Zhao, N.N.; Li, W.; Rubinstein, M.; Kumacheva, E. Step-Growth Polymerization of Inorganic Nanoparticles. Science 2010, 329, 197–200. [Google Scholar] [CrossRef]
- Yi, C.; Yang, Y.; Nie, Z. Alternating copolymerization of inorganic nanoparticles. J. Am. Chem. Soc. 2019, 141, 7917–7925. [Google Scholar] [CrossRef]
- He, H.; Shen, X.; Yao, C.; Tao, J.; Chen, W.; Nie, Z.; Wu, Y.; Dai, L.; Sang, Y. Hierarchically Responsive Alternating Nano-Copolymers with Tailored Interparticle Bonds. Angew. Chem. Int. Ed. 2024, 63, e202401828. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, G.; Martinez-Miranda, L.J.; Yu, H.; Liu, K.; Nie, Z. Synthesis and Liquid-Crystal Behavior of Bent Colloidal Silica Rods. J. Am. Chem. Soc. 2016, 138, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rico, C.; Chiappini, M.; Yanagishima, T.; de Sousa, H.; Aarts, D.G.A.L.; Dijkstra, M.; Dullens, R.P.A. Shaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phases. Science 2020, 369, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Pei, H.; Zhang, X.; Shi, W.; Liu, M.; Faul, C.F.J.; Yang, B.; Zhao, Y.; Liu, K.; Lu, Z.; et al. Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases. Nat. Commun. 2022, 13, 5549. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.F.; Zhang, W.B.; Yue, K.; Li, X.P.; Liu, H.; Xin, Y.; Wang, C.L.; Wesdemiotis, C.; Cheng, S.Z.D. Giant Molecular Shape Amphiphiles Based on Polystyrene-Hydrophilic [60]Fullerene Conjugates: Click Synthesis, Solution Self-Assembly, and Phase Behavior. J. Am. Chem. Soc. 2012, 134, 7780–7787. [Google Scholar] [CrossRef]
- Yu, X.F.; Zhong, S.; Li, X.P.; Tu, Y.F.; Yang, S.G.; Van Horn, R.M.; Ni, C.Y.; Pochan, D.J.; Quirk, R.P.; Wesdemiotis, C.; et al. A Giant Surfactant of Polystyrene-(Carboxylic Acid-Functionalized Polyhedral Oligomeric Silsesquioxane) Amphiphile with Highly Stretched Polystyrene Tails in Micellar Assemblies. J. Am. Chem. Soc. 2010, 132, 16741–16744. [Google Scholar] [CrossRef]
- Zhong, Y.; Moore, T.C.; Dwyer, T.; Butrum-Griffith, A.; Allen, V.R.; Chen, J.; Wang, Y.; Cheng, F.; Glotzer, S.C.; Ye, X. Engineering and direct imaging of nanocube self-assembly pathways. Nat. Chem. Eng. 2024, 1, 532–541. [Google Scholar] [CrossRef]
- Oh, J.S.; Lee, S.; Glotzer, S.C.; Yi, G.R.; Pine, D.J. Colloidal fibers and rings by cooperative assembly. Nat. Commun. 2019, 10, 3936. [Google Scholar] [CrossRef]
- Wang, S.Z.; Lee, S.M.; Du, J.S.; Partridge, B.E.; Cheng, H.F.; Zhou, W.J.; Dravid, V.P.; Lee, B.; Glotzer, S.C.; Mirkin, C.A. The emergence of valency in colloidal crystals through electron equivalents. Nat. Mater. 2022, 21, 580–587. [Google Scholar] [CrossRef]
- Luo, B.; Smith, J.W.; Wu, Z.; Kim, J.; Ou, Z.; Chen, Q. Polymerization-Like Co-Assembly of Silver Nanoplates and Patchy Spheres. ACS Nano 2017, 11, 7626–7633. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Yee, D.W.; Ye, M.; Macfarlane, R.J. Nanoparticle Assembly as a Materials Development Tool. J. Am. Chem. Soc. 2022, 144, 3330–3346. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.R.; Gianola, D.S.; Ray, T.R. Bridging functional nanocomposites to robust macroscale devices. Science 2019, 364, eaav4299. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Yao, L.; Wang, Z.; Qian, C.; Wang, Z.; Li, J.; Liu, C.; Wang, Y.; Chen, Q. Nanoscopic Imaging of Self-Propelled Ultrasmall Catalytic Nanomotors. ACS Nano 2024, 18, 14231–14243. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Li, J.; Cheung, S.T.H.; Tian, C.; Kim, S.H.; Yi, G.R.; Ducrot, E.; Wang, Y. Active Patchy Colloids with Shape-Tunable Dynamics. J. Am. Chem. Soc. 2019, 141, 14853–14863. [Google Scholar] [CrossRef]
- McGlasson, A.; Russell, T.P. From solid surfactants to micromotors: An overview of the synthesis and applications of heterogeneous particles. Mater. Today 2024, 74, 149–166. [Google Scholar] [CrossRef]
- Ding, L.J.; Liu, B.; Peil, A.; Fan, S.; Chao, J.; Liu, N. DNA-Directed Assembly of Photonic Nanomaterials for Diagnostic and Therapeutic Applications. Adv. Mater. 2025, 37, 2500086. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, D.D.; Tanriover, I.; Zhou, W.J.; Li, Y.W.; López-Arteaga, R.; Aydin, K.; Mirkin, C.A. Nonlinear optical colloidal metacrystals. Nat. Photonics 2025, 19, 20–27. [Google Scholar] [CrossRef]
- Kadic, M.; Milton, G.W.; van Hecke, M.; Wegener, M. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 198–210. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Q.; Yin, Y. Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chem. Rev. 2022, 122, 4976–5067. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, W.; Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 2022, 377, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xue, Y.; Bernardino, K.; Zhang, N.-N.; Gomes, W.R.; Ramesar, N.S.; Liu, S.; Hu, Z.; Sun, T.; de Moura, A.F.; et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 2021, 371, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Li, J.; Li, Q.; Chen, X.; Liu, X.; Wang, F.; Qu, Z.; Ge, Z.; Narayanan, R.P.; Williams, D.; et al. Programming nanoparticle valence bonds with single-stranded DNA encoders. Nat. Mater. 2020, 19, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.J.; Lim, Y.; Lin, H.X.; Lee, S.; Li, Y.W.; Huang, Z.Y.; Du, J.S.; Lee, B.; Wang, S.Z.; Sánchez-Iglesias, A.; et al. Colloidal quasicrystals engineered with DNA. Nat. Mater. 2024, 23, 424–428. [Google Scholar] [CrossRef]
- Yang, F.; Chen, Q.Y.; Wang, J.J.; Chang, J.J.; Dong, W.H.; Cao, W.; Ye, S.S.; Shi, L.; Nie, Z.H. Fabrication of Centimeter-Scale Plasmonic Nanoparticle Arrays with Ultranarrow Surface Lattice Resonances. Acs Nano 2023, 17, 725–734. [Google Scholar] [CrossRef]
- Liu, W.; Tagawa, M.; Xin, H.L.; Wang, T.; Emamy, H.; Li, H.; Yager, K.G.; Starr, F.W.; Tkachenko, A.V.; Gang, O. Diamond family of nanoparticle superlattices. Science 2016, 351, 582–586. [Google Scholar] [CrossRef]
- Choueiri, R.M.; Galati, E.; Therien-Aubin, H.; Klinkova, A.; Larin, E.M.; Querejeta-Fernandez, A.; Han, L.; Xin, H.L.; Gang, O.; Zhulina, E.B.; et al. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79–83. [Google Scholar] [CrossRef]
- Yan, X.-Y.; Guo, Q.-Y.; Liu, X.-Y.; Wang, Y.; Wang, J.; Su, Z.; Huang, J.; Bian, F.; Lin, H.; Huang, M.; et al. Superlattice Engineering with Chemically Precise Molecular Building Blocks. J. Am. Chem. Soc. 2021, 143, 21613–21621. [Google Scholar] [CrossRef]
- Paturej, J.; Sheiko, S.S.; Panyukov, S.; Rubinstein, M. Molecular structure of bottlebrush polymers in melts. Sci. Adv. 2016, 2, e1601478. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, C.; Dong, W.; Zheng, D.; Yang, Y.; Li, W.; Duan, X.; Yang, D.; Nie, Z. Single Copolymer Chain-Templated Synthesis of Ultrasmall Symmetric and Asymmetric Silica-Based Nanoparticles. Adv. Funct. Mater. 2022, 32, 2112742. [Google Scholar] [CrossRef]
- Sveinbjörnsson, B.R.; Weitekamp, R.A.; Miyake, G.M.; Xia, Y.; Atwater, H.A.; Grubbs, R.H. Rapid self-assembly of brush block copolymers to photonic crystals. Proc. Natl. Acad. Sci. USA 2012, 109, 14332–14336. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, L.; Han, W.; Xin, X.; Lin, Z. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 2013, 8, 426–431. [Google Scholar] [CrossRef]
- Xia, Y.; Olsen, B.D.; Kornfield, J.A.; Grubbs, R.H. Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assemblies: The Importance of Side Chain Arrangement. J. Am. Chem. Soc. 2009, 131, 18525–18532. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Kornfield, J.A.; Grubbs, R.H. Efficient Synthesis of Narrowly Dispersed Brush Polymers via Living Ring-Opening Metathesis Polymerization of Macromonomers. Macromolecules 2009, 42, 3761–3766. [Google Scholar] [CrossRef]
- Li, Z.; Ma, J.; Lee, N.S.; Wooley, K.L. Dynamic cylindrical assembly of triblock copolymers by a hierarchical process of covalent and supramolecular interactions. J. Am. Chem. Soc. 2011, 133, 1228–1231. [Google Scholar] [CrossRef]
- Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef]
- Li, F.L.; Wen, Z.D.; Yang, Y.J.; Sun, D.Y.; Zhu, J.T.; Nie, Z.H.; Yang, Z.Z. Large-Scale Synthesis of Janus Nanorods by Electrostatics-Mediated Intramolecular Cross-Linking of Polymeric Bottlebrushes. J. Am. Chem. Soc. 2025, 147, 6857–6865. [Google Scholar] [CrossRef]
- Zhao, B.; Kelly, M.T.; Dayarathne, S.H.; Yu, S.; Ojima, K.O.; Li, C.Y. pH-Responsive Shape-Changing Molecular Bottlebrush Emulsifier. Macromolecules 2025, 58, 1982–1992. [Google Scholar] [CrossRef]
- Wang, W.; Wang, P.; Chen, L.; Zhao, M.; Hung, C.-T.; Yu, C.; Al-Khalaf, A.A.; Hozzein, W.N.; Zhang, F.; Li, X.; et al. Engine-Trailer-Structured Nanotrucks for Efficient Nano-Bio Interactions and Bioimaging-Guided Drug Delivery. Chem 2020, 6, 1097–1112. [Google Scholar] [CrossRef]
- Shao, Y.; Hou, B.; Li, W.; Yan, X.; Wang, X.; Xu, Y.; Dong, Q.; Li, W.; He, J.; Zhang, W.-B. Three-Component Bolaform Giant Surfactants Forming Lamellar Nanopatterns with Sub-5 nm Feature Sizes. Macromolecules 2023, 56, 1562–1571. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, J.; Li, L.; Ai, L.; Song, K.; Zhai, H.; Yi, C. Total Synthesis of Surfactant-Mimetic Nanocolloids via Regioselective Silica Deposition on Bottlebrush Polymers. Appl. Sci. 2025, 15, 8766. https://doi.org/10.3390/app15158766
Zeng J, Li L, Ai L, Song K, Zhai H, Yi C. Total Synthesis of Surfactant-Mimetic Nanocolloids via Regioselective Silica Deposition on Bottlebrush Polymers. Applied Sciences. 2025; 15(15):8766. https://doi.org/10.3390/app15158766
Chicago/Turabian StyleZeng, Junyi, Linlin Li, Li Ai, Kai Song, Heng Zhai, and Chenglin Yi. 2025. "Total Synthesis of Surfactant-Mimetic Nanocolloids via Regioselective Silica Deposition on Bottlebrush Polymers" Applied Sciences 15, no. 15: 8766. https://doi.org/10.3390/app15158766
APA StyleZeng, J., Li, L., Ai, L., Song, K., Zhai, H., & Yi, C. (2025). Total Synthesis of Surfactant-Mimetic Nanocolloids via Regioselective Silica Deposition on Bottlebrush Polymers. Applied Sciences, 15(15), 8766. https://doi.org/10.3390/app15158766