Additively Manufactured Polymers for Electronic Components
Abstract
1. Introduction
2. Methodology
3. Polymers Used for AM in Electronic Applications
3.1. Intrinsically Conductive Polymers (ICPs)
3.2. Extrinsically Conductive Polymers (ECPs)
3.2.1. Carbon Nanotubes
3.2.2. Graphene
3.2.3. MXenes
3.2.4. Filler–Polymer Interactions
3.3. Insulating Polymers
4. Applications in the Electronic Field of Additively Manufactured Polymers
4.1. Sensors
4.1.1. Strain Sensors
4.1.2. Sensors for Human Health Monitoring
4.2. Actuators
4.3. Thin-Film Transistors
4.4. OLED
4.5. Organic Solar Cells
4.6. Wafer Bonding
5. Current Limitations and Overcoming Strategies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2PL | Two-photon lithography |
AJP | Aerosol jet printing |
AM | Additive manufacturing |
BCB | Benzocyclobutene |
BHJ | Bulk heterojunction |
CAGR | Compound annual growth rate |
CIJ | Continuous inkjet |
CNTs | Carbon nanotubes |
CRE | Coffee ring effect |
DE | Dielectric elastomer |
DIW | Direct ink writing |
DLP | Digital light processing |
DoD | Drop-on-demand |
DRL | Dynamic release layer |
ECPs | Extrinsically conductive polymers |
EHD | Electrohydrodynamic |
FDM | Fused deposition modelling |
FFF | Fused filament fabrication |
FTIR | Fourier transform infrared spectroscopy |
GO | Graphene oxide |
HHM | Hybrid and heterogeneous material |
IC | Integrated circuit |
ICPs | Intrinsically conductive polymers |
IJP | Inkjet printing |
IoT | Internet of Things |
LIFT | Laser-induced forward transfer |
MEMS | Microelectromechanical systems |
MWCNT | Multiwall CNT |
NPs | Nanoparticles |
OFETs | Organic field-effect transistors |
OLEDs | Organic light-emitting diodes |
OPV | Organic photovoltaics |
OCS | Organic solar cells |
OTFT | Organic thin-film transistor |
P3HT | Poly(3-hexyl thiophene) |
PAH | Polycyclic aromatic hydrocarbon |
PCBM | Phenyl-C60-butyric acid methyl ester |
PEDOT:PSS | Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) |
PEGDA | Poly(ethylene glycol) diacrylate |
PEGMEMA | Poly(ethylene glycol) methyl ether methacrylate |
PEO | Poly(ethylene oxide) |
PIP | Piezoelectric inkjet printhead |
PPE | Personal protective equipment |
SEM | Scanning electron microscopy |
SL | Stereolithography |
SMPs | Shape memory polymer |
TIJ | Thermal inkjet printing |
References
- Yu, X.; Shou, W.; Mahajan, B.K.; Huang, X.; Pan, H. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. Adv. Mater. 2018, 30, 1707624. [Google Scholar] [CrossRef]
- Lu, B.; Lan, H.; Liu, H. Additive manufacturing frontier: 3D printing electronics. Opto-Electron. Adv. 2018, 1, 170004. [Google Scholar] [CrossRef]
- Liu, L.; Xiang, D.; Wu, Y.; Zhou, Z.; Li, H.; Zhao, C.; Li, Y. Conductive Polymer Composites Based Flexible Strain Sensors by 3D Printing: A Mini-Review. Front. Mater. 2021, 8, 725420. [Google Scholar] [CrossRef]
- Dutta, S.D.; Ganguly, K.; Randhawa, A.; Patil, T.V.; Kim, H.; Acharya, R.; Lim, K.-T. 3D Printable Hydrogel Bioelectronic Interfaces for Healthcare Monitoring and Disease Diagnosis: Materials, Design Strategies, and Applications. Adv. Mater. Technol. 2024, 9, 2301874. [Google Scholar] [CrossRef]
- Nyabadza, A.; Vázquez, M.; Coyle, S.; Fitzpatrick, B.; Brabazon, D. Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physical and Chemical Property Sensors. Appl. Sci. 2021, 11, 8563. [Google Scholar] [CrossRef]
- Ryan, K.R.; Down, M.P.; Hurst, N.J.; Keefe, E.M.; Banks, C.E. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience 2022, 2, 365–381. [Google Scholar] [CrossRef]
- Siripongpreda, T.; Hoven, V.P.; Narupai, B.; Rodthongkum, N. Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications. Eur. Polym. J. 2023, 184, 111806. [Google Scholar] [CrossRef]
- Niendorf, K.; Raeymaekers, B. Additive Manufacturing of Polymer Matrix Composite Materials with Aligned or Organized Filler Material: A Review. Adv. Eng. Mater. 2021, 23, 2001002. [Google Scholar] [CrossRef]
- Vijaybabu, T.R.; Ramesh, T.; Pandipati, S.; Mishra, S.; Sridevi, G.; Raja, C.P.; Mensah, R.A.; Das, O.; Misra, M.; Mohanty, A.; et al. High Thermal Conductivity Polymer Composites Fabrication through Conventional and 3D Printing Processes: State-of-the-Art and Future Trends. Macromol. Mater. Eng. 2023, 308, 2300001. [Google Scholar] [CrossRef]
- Almuallim, B.; Harun, W.S.W.; Al Rikabi, I.J.; Mohammed, H.A. Thermally conductive polymer nanocomposites for filament-based additive manufacturing. J. Mater. Sci. 2022, 57, 3993–4019. [Google Scholar] [CrossRef]
- Rao, C.H.; Avinash, K.; Varaprasad, B.K.S.V.L.; Goel, S. A Review on Printed Electronics with Digital 3D Printing: Fabrication Techniques, Materials, Challenges and Future Opportunities. J. Electron. Mater. 2022, 51, 2747–2765. [Google Scholar] [CrossRef]
- Ranjan, N.; Kumar, R.; Kumar, S.; Kumar, D.; Saxena, K.K. Innovative high-performance metal reinforced polymers composites for 3D printing applications: A review. Adv. Mater. Process. Technol. 2024, 10, 1800–1813. [Google Scholar] [CrossRef]
- Vidakis, N.; Michailidis, N.; David, C.; Papadakis, V.; Argyros, A.; Sagris, D.; Spiridaki, M.; Mountakis, N.; Nasikas, N.K.; Petousis, M. Polyvinyl alcohol as a reduction agent in material extrusion additive manufacturing for the development of pharmaceutical-grade polypropylene/silver nanocomposites with antibacterial properties. Mater. Today Commun. 2024, 39, 109366. [Google Scholar] [CrossRef]
- Vidakis, N.; Michailidis, N.; Petousis, M.; Nasikas, N.K.; Saltas, V.; Papadakis, V.; Mountakis, N.; Argyros, A.; Spiridaki, M.; Valsamos, I. Multifunctional HDPE/Cu biocidal nanocomposites for MEX additive manufactured parts: Perspectives for the defense industry. Def. Technol. 2024, 38, 16–32. [Google Scholar] [CrossRef]
- Raj, R.; Moharana, A.P.; Dixit, A.R. Design and Fabrication of Flexible Woodpile Structured Nanocomposite for Microwave Absorption Using Material Extrusion Additive Technique. Addit. Manuf. 2024, 79, 103935. [Google Scholar] [CrossRef]
- Rigotti, D.; Dorigato, A.; Pegoretti, A. Multifunctional 3D-Printed Thermoplastic Polyurethane (TPU)/Multiwalled Carbon Nanotube (MWCNT) Nanocomposites for Thermal Management Applications. Appl. Sci. 2024, 14, 9614. [Google Scholar] [CrossRef]
- Niu, J.-H.; Yang, T.-B.; Li, X.-Y.; Xu, L.; Lin, H.; Zhong, G.-J. 3D-Printed Co-continuous Segregated CNT/TPU Composites with Superb Electromagnetic Interference Shielding and Excellent Mechanical Properties. Ind. Eng. Chem. Res. 2023, 62, 10498–10506. [Google Scholar] [CrossRef]
- Lopes, A.C.; Sampaio, Á.M.; Pontes, A.J. Development and characterization of composite materials with multi-walled carbon nanotubes and graphene nanoplatelets for powder bed fusion. Rapid Prototyp. J. 2024, 30, 95–105. [Google Scholar] [CrossRef]
- Greco, G.; Giuri, A.; Bagheri, S.; Seiti, M.; Degryse, O.; Rizzo, A.; Mele, C.; Ferraris, E.; Corcione, C.E. Pedot:PSS/Graphene Oxide (GO) Ternary Nanocomposites for Electrochemical Applications. Molecules 2023, 28, 2963. [Google Scholar] [CrossRef]
- Urra Sanchez, O.; Besharatloo, H.; Yus, J.; Sanchez-Herencia, A.J.; Ferrari, B. Material thermal extrusion of conductive 3D electrodes using highly loaded graphene and graphite colloidal feedstock. Addit. Manuf. 2023, 72, 103643. [Google Scholar] [CrossRef]
- Bajpai, A.; Jain, P.K. Investigation on using graphite filler for 3D printing of flexible electrically conductive polymer by extrusion-based additive manufacturing. Polym. Eng. Sci. 2024, 64, 328–338. [Google Scholar] [CrossRef]
- Vaidyanathan, R. Additive Manufacturing Technologies for Polymers and Composites. In Additive Manufacturing, 1st ed.; Bandyopadhyay, A., Bose, S., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Truby, R.L.; Lewis, J.A. Printing soft matter in three dimensions. Nature 2016, 540, 371–378. [Google Scholar] [CrossRef]
- Farahani, R.D.; Dubé, M.; Therriault, D. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Adv. Mater. 2016, 28, 5794–5821. [Google Scholar] [CrossRef]
- Kempton, W.L. A Design Sociotechnical Making of 3D Printing. In Additive Manufacturing: Design, Methods, and Processes, 1st ed.; Killi, S.W., Ed.; Jenny Stanford Publishing: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Shah, M.A.; Lee, D.G.; Lee, B.Y.; Hur, S. Classifications and Applications of Inkjet Printing Technology: A Review. IEEE Access 2021, 9, 140079–140102. [Google Scholar] [CrossRef]
- Costa Angeli, M.A.; Ciocca, M.; Petti, L.; Lugli, P. Chapter Two—Advances in printing technologies for soft robotics devices applications. In Advances in Chemical Engineering; Magagnin, L., Rossi, F., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 57, pp. 45–89. [Google Scholar] [CrossRef]
- de Gans, B.-J.; Duineveld, P.C.; Schubert, U.S. Inkjet Printing of Polymers: State of the Art and Future Developments. Adv. Mater. 2004, 16, 203–213. [Google Scholar] [CrossRef]
- Xu, X.; Meteyer, S.; Perry, N.; Zhao, Y.F. Energy consumption model of Binder-jetting additive manufacturing processes. Int. J. Prod. Res. 2015, 53, 7005–7015. [Google Scholar] [CrossRef]
- Hoey, J.M.; Lutfurakhmanov, A.; Schulz, D.L.; Akhatov, I.S. A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics. J. Nanotechnol. 2012, 2012, 324380. [Google Scholar] [CrossRef]
- Srivatsan, T.S.; Sudarshan, T.S. Additive Manufacturing of Materials: Viable Techniques, Metals, Advances, Advantages, and Applications. In Additive Manufacturing: Innovations, Advances, and Applications, 1st ed.; Srivatsan, T.S., Sudarshan, T.S., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Goh, G.L.; Agarwala, S.; Yeong, W.Y. Aerosol-Jet-Printed Preferentially Aligned Carbon Nanotube Twin-Lines for Printed Electronics. ACS Appl. Mater. Interfaces 2019, 11, 43719–43730. [Google Scholar] [CrossRef]
- Arsenov, P.V.; Efimov, A.A.; Ivanov, V.V. Optimizing Aerosol Jet Printing Process of Platinum Ink for High-Resolution Conductive Microstructures on Ceramic and Polymer Substrates. Polymers 2021, 13, 918. [Google Scholar] [CrossRef]
- Wilkinson, N.J.; Smith, M.A.A.; Kay, R.W.; Harris, R.A. A review of aerosol jet printing—A non-traditional hybrid process for micro-manufacturing. Int. J. Adv. Manuf. Technol. 2019, 105, 4599–4619. [Google Scholar] [CrossRef]
- Deiner, L.J.; Reitz, T.L. Inkjet and Aerosol Jet Printing of Electrochemical Devices for Energy Conversion and Storage. Adv. Eng. Mater. 2017, 19, 1600878. [Google Scholar] [CrossRef]
- Therriault, D.; Shepherd, R.F.; White, S.R.; Lewis, J.A. Fugitive Inks for Direct-Write Assembly of Three-Dimensional Microvascular Networks. Adv. Mater. 2005, 17, 395–399. [Google Scholar] [CrossRef]
- Therriault, D.; White, S.R.; Lewis, J.A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2003, 2, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Chrisey, D.B. The Power of Direct Writing. Science 2000, 289, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Feng, C.; Zhang, L.; Zhang, L.; Wang, L. Direct ink writing of polymer-based materials—A review. Polym. Eng. Sci. 2025, 65, 431–454. [Google Scholar] [CrossRef]
- Kasraie, M.; Krieg, A.S.; Abbott, A.C.; Gawde, A.; Eisele, T.C.; King, J.A.; Odegard, G.M.; Baur, J.W.; Pour Shahid Saeed Abadi, P. Carbon nanotube as a conductive rheological modifier for carbon fiber-reinforced epoxy 3D printing inks. Compos. Part B Eng. 2024, 282, 111583. [Google Scholar] [CrossRef]
- Serra, P.; Piqué, A. Laser-Induced Forward Transfer: Fundamentals and Applications. Adv. Mater. Technol. 2019, 4, 1800099. [Google Scholar] [CrossRef]
- Morales, M.; Munoz-Martin, D.; Marquez, A.; Lauzurica, S.; Molpeceres, C. Chapter 13—Laser-Induced Forward Transfer Techniques and Applications. In Advances in Laser Materials Processing, 2nd ed.; Lawrence, J., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 339–379. [Google Scholar] [CrossRef]
- Delaporte, P.; Alloncle, A.-P. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology. Opt. Laser Technol. 2016, 78, 33–41. [Google Scholar] [CrossRef]
- Jordan, R.S.; Wang, Y. 3D printing of conjugated polymers. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 1592–1605. [Google Scholar] [CrossRef]
- Qiu, Z.; Hammer, B.A.G.; Müllen, K. Conjugated polymers—Problems and promises. Prog. Polym. Sci. 2020, 100, 101179. [Google Scholar] [CrossRef]
- Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Wu, K.; Kim, K.-W.; Kwon, J.H.; Kim, J.K.; Kim, S.H.; Moon, H.C. Direct ink writing of PEDOT:PSS inks for flexible micro-supercapacitors. J. Ind. Eng. Chem. 2023, 123, 272–277. [Google Scholar] [CrossRef]
- Criado-Gonzalez, M.; Dominguez-Alfaro, A.; Lopez-Larrea, N.; Alegret, N.; Mecerreyes, D. Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS Appl. Polym. Mater. 2021, 3, 2865–2883. [Google Scholar] [CrossRef]
- Sarojini Kg, K.; Dhar, P.; Varughese, S.; Das, S.K. Coalescence Dynamics of PEDOT:PSS Droplets Impacting at Offset on Substrates for Inkjet Printing. Langmuir 2016, 32, 5838–5851. [Google Scholar] [CrossRef]
- Hull, C.W. Apparatus for Production of Three-Dimensional Objects by Stereolithography. US4575330A, 1986. Available online: https://patents.google.com/patent/US4575330A/en (accessed on 20 June 2025).
- Scordo, G.; Bertana, V.; Ballesio, A.; Carcione, R.; Marasso, S.L.; Cocuzza, M.; Pirri, C.F.; Manachino, M.; Gomez Gomez, M.; Vitale, A.; et al. Effect of Volatile Organic Compounds Adsorption on 3D-Printed PEGDA:PEDOT for Long-Term Monitoring Devices. Nanomaterials 2021, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Carayon, I.; Gaubert, A.; Mousli, Y.; Philippe, B. Electro-responsive hydrogels: Macromolecular and supramolecular approaches in the biomedical field. Biomater. Sci. 2020, 8, 5589–5600. [Google Scholar] [CrossRef]
- Li, J.; Cao, J.; Lu, B.; Gu, G. 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 2023, 8, 604–622. [Google Scholar] [CrossRef]
- Aggas, J.R.; Abasi, S.; Phipps, J.F.; Podstawczyk, D.A.; Guiseppi-Elie, A. Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics. Biosens. Bioelectron. 2020, 168, 112568. [Google Scholar] [CrossRef]
- Holness, F.B.; Price, A.D. Direct ink writing of 3D conductive polyaniline structures and rheological modelling. Smart Mater. Struct. 2018, 27, 015006. [Google Scholar] [CrossRef]
- Han, H.; Cho, S. Fabrication of Conducting Polyacrylate Resin Solution with Polyaniline Nanofiber and Graphene for Conductive 3D Printing Application. Polymers 2018, 10, 1003. [Google Scholar] [CrossRef]
- Arias-Ferreiro, G.; Lasagabáster-Latorre, A.; Ares-Pernas, A.; Dopico-García, M.S.; Pereira, N.; Costa, P.; Lanceros-Mendez, S.; Abad, M.-J. Flexible 3D Printed Acrylic Composites based on Polyaniline/Multiwalled Carbon Nanotubes for Piezoresistive Pressure Sensors. Adv. Electron. Mater. 2022, 8, 2200590. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.; Shi, Y.; Zhang, L.; Xu, X. 3D All Printing of Polypyrrole Nanotubes for High Mass Loading Flexible Supercapacitor. ChemistrySelect 2019, 4, 10902–10906. [Google Scholar] [CrossRef]
- Distler, T.; Polley, C.; Shi, F.; Schneidereit, D.; Ashton, M.D.; Friedrich, O.; Kolb, J.F.; Hardy, J.G.; Detsch, R.; Seitz, H.; et al. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. Adv. Healthc. Mater. 2021, 10, 2001876. [Google Scholar] [CrossRef]
- Alessandro, A.D.; Rallini, M.; Ubertini, F.; Materazzi, A.L.; Kenny, J.M.; Laflamme, S. A comparative study between carbon nanotubes and carbon nanofibers as nanoinclusions in self-sensing concrete. In Proceedings of the 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), Rome, Italy, 27–30 July 2015; pp. 698–701. [Google Scholar] [CrossRef]
- Greenwood, P.; Thring, R.; Chen, R. Material property models for polyethylene-based conductive blends suitable for PEM fuel cell bipolar plates. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2016, 230, 131–141. [Google Scholar] [CrossRef]
- Cosola, A.; Roppolo, I.; Frascella, F.; Napione, L.; Barrera, G.; Tiberto, P.; Turbant, F.; Arluison, V.; Caldelari, I.; Mercier, N.; et al. 4D Printing of Multifunctional Devices Induced by Synergistic Role of Magnetite and Silver Nanoparticles in Polymeric Nanocomposites. Adv. Funct. Mater. 2024, 34, 2406226. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, R.; Chohan, J.; Sharma, S.; Singh, J.; Ilyas, R.A.; Rangappa, S.M.; Siengchin, S.; Naresh, K.; Raghu, S.; et al. Investigation of copper reinforced Acrylonitrile Butadiene Styrene and Nylon 6 based thermoplastic polymer nanocomposite filaments for 3D printing of electronic components. High Perform. Polym. 2023, 35, 115–125. [Google Scholar] [CrossRef]
- Srinivasaraghavan Govindarajan, R.; Ren, Z.; Melendez, I.; Boetcher, S.K.S.; Madiyar, F.; Kim, D. Polymer Nanocomposite Sensors with Improved Piezoelectric Properties through Additive Manufacturing. Sensors 2024, 24, 2694. [Google Scholar] [CrossRef] [PubMed]
- Bagatella, S.; Cereti, A.; Manarini, F.; Cavallaro, M.; Suriano, R.; Levi, M. Thermally Conductive and Electrically Insulating Polymer-Based Composites Heat Sinks Fabricated by Fusion Deposition Modeling. Polymers 2024, 16, 432. [Google Scholar] [CrossRef]
- Bernasconi, R.; Bellè, U.; Brigatti, S.; Diamanti, M.V. 3D printing of photocatalytic nanocomposites containing titania nanoparticles. Addit. Manuf. 2024, 79, 103916. [Google Scholar] [CrossRef]
- Gorur, M.C.; Doganay, D.; Durukan, M.B.; Cicek, M.O.; Kalay, Y.E.; Kincal, C.; Solak, N.; Unalan, H.E. 3D printing of hexagonal boron nitride nanosheets/polylactic acid nanocomposites for thermal management of electronic devices. Compos. Part B Eng. 2023, 265, 110955. [Google Scholar] [CrossRef]
- Hisham, M.; Dileep, C.; Jacob, L.; Butt, H. Additive manufacturing of carbon nanocomposites for structural applications. J. Mater. Res. Technol. 2024, 28, 4674–4693. [Google Scholar] [CrossRef]
- Musenich, L.; Berardengo, M.; Avalle, M.; Haj-Ali, R.; Sharabi, M.; Libonati, F. Anisotropic mechanical and sensing properties of carbon black-polylactic acid nanocomposites produced by fused filament fabrication. Smart Mater. Struct. 2024, 33, 095010. [Google Scholar] [CrossRef]
- Bajpai, A.; Jain, P.K. Selection Method of Suitable Filler for Fabrication of Flexible Electrically Conductive Parts through Extrusion-Based Additive Manufacturing. J. Mater. Eng. Perform. 2025. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, N.; Ramesh, M.R.; Doddamani, M. 4D printing of heat-stimulated shape memory polymer composite for high-temperature smart structures/actuators applications. Polym. Compos. 2024, 45, 15460–15490. [Google Scholar] [CrossRef]
- Alshihabi, M.; Kayacan, M.Y. Enhancing Electrical and Magnetic Properties in SLA 3D Printed Resin Composites With Nano MWCNT, TiN, and c-BN Powders. Polym. Adv. Technol. 2025, 36, e70109. [Google Scholar] [CrossRef]
- Martins, L.C.; Silva, C.S.; Fernandes, L.C.; Sampaio, Á.M.; Pontes, A.J. Evaluating the Electromagnetic Shielding of Continuous Carbon Fiber Parts Produced by Additive Manufacturing. Polymers 2023, 15, 4649. [Google Scholar] [CrossRef] [PubMed]
- Alshihabi, M.; Kayacan, M.Y. Effect of nanosized carbon nanotubes, Titanium Nitride and cubic Boron Nitride powders on mechanical and thermal properties of SLA 3D printed resin composites. Polym. Compos. 2024, 45, 15561–15573. [Google Scholar] [CrossRef]
- Divakaran, N.; Alex, Y.; Mohapatra, A.; Mohanty, S. Material extrusion-based 3D printed capacitor optimization: Enhancing performance with ZnO and Cu-CNT reinforced ABS composites. Appl. Mater. Today 2024, 40, 102363. [Google Scholar] [CrossRef]
- Cho, Y.; Cho, J.; Han, S.; Kim, H.; Kim, J. Influence of amine surface treatments of carbon nanotube and boron nitride hybrid fillers on the thermal and mechanical properties of flexible amine-based acrylate composites via 3D vat photopolymerization. Polym. Adv. Technol. 2024, 35, e6435. [Google Scholar] [CrossRef]
- Li, J.-W.; Chen, H.-F.; Liu, Y.-Z.; Wang, J.-H.; Lu, M.-C.; Chiu, C.-W. Photocurable 3D-printed AgNPs/Graphene/Polymer nanocomposites with high flexibility and stretchability for ECG and EMG smart clothing. Chem. Eng. J. 2024, 484, 149452. [Google Scholar] [CrossRef]
- Fares, M.M.; Radaydeh, S.K. 3D printing inks of rGO/Fe3O4@Polyacrylonitrile as organic semiconductors. Synth. Met. 2023, 297, 117418. [Google Scholar] [CrossRef]
- Huang, J.; Huang, X.; Wu, P. Readily prepared and processed multifunctional MXene nanocomposite hydrogels for smart electronics. SmartMat 2024, 5, e1228. [Google Scholar] [CrossRef]
- Yang, T.; Hu, J.; Yan, Z.; Edeleva, M.; Cardon, L.; Zhang, J. Facilely fabricated ultrasensitive, high-tensile dual bionic-inspired strain sensor based on AgNWs@CNTs/TPU composites. Chem. Eng. J. 2025, 513, 162964. [Google Scholar] [CrossRef]
- Cardenas, J.A.; Lu, S.; Williams, N.X.; Doherty, J.L.; Franklin, A.D. In-Place Printing of Flexible Electrolyte-Gated Carbon Nanotube Transistors With Enhanced Stability. IEEE Electron. Device Lett. 2021, 42, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Thohid Rayhan, M.; Islam, M.A.; Khan, M.; Abir Hasan, M.; Hosne Mobarak, M.; Israfil Hossain Rimon, M.; Hossain, N. Advances in additive manufacturing of nanocomposite materials fabrications and applications. Eur. Polym. J. 2024, 220, 113406. [Google Scholar] [CrossRef]
- Koohbor, B.; Xue, W.; Uddin, K.Z.; Youssef, G.; Nerbetski, D.; Steiger, B.; Kenney, J.; Yarem, D. Fabrication and Characterization of Electrically Conductive 3D Printable TPU/MWCNT Filaments for Strain Sensing in Large Deformation Conditions. Adv. Sens. Res. 2024, 3, 2300198. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, P.; Hua, C.; Xu, S.; Qu, D.; Liu, Y.; Yu, J.; Song, X.; Jiang, J.; Liu, Y. Strain-Tolerant Nanocomposite Conductors with Engineered Bicontinuous Phase System by Additive Liquid/Solid Assembly. Adv. Funct. Mater. 2024, 34, 2404373. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Z.; Hu, C.; Yang, L.; Zhang, D. A stretchable flexible strain sensor with high sensitivity and fast response fabricated by embedded 3D printing of the hybrid polydimethylsiloxane/conductive carbon paste composites. J. Appl. Polym. Sci. 2024, 141, e55558. [Google Scholar] [CrossRef]
- Nezafati, M.; Salimiyan, N.; Salighehdar, S.; Sedghi, R.; Dolatshahi-Pirouz, A.; Mao, Y. Facile fabrication of biomimetic and conductive hydrogels with robust mechanical properties and 3D printability for wearable strain sensors in wireless human-machine interfaces. Chem. Eng. J. 2025, 509, 161112. [Google Scholar] [CrossRef]
- Tran, T.S.; Dutta, N.K.; Choudhury, N.R. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Adv. Colloid. Interface Sci. 2018, 261, 41–61. [Google Scholar] [CrossRef]
- Tuyen, N.T.K.; Kim, D.M.; Lee, J.-W.; Jung, J. Innovative Hybrid Nanocomposites in 3D Printing for Functional Applications: A Review. Molecules 2024, 29, 5159. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, Q.; Ren, S.; Lei, M.; Zhang, F.; Zhang, P.; Yu, Y.; Wei, H. Stretchable conductive shape-memory nanocomposites for programmable electronics via photo-mediated multiscale structural design. Chem. Eng. J. 2024, 497, 154656. [Google Scholar] [CrossRef]
- Ecco, L.G.; Dul, S.; Schmitz, D.P.; Barra, G.M.D.O.; Soares, B.G.; Fambri, L.; Pegoretti, A. Rapid Prototyping of Efficient Electromagnetic Interference Shielding Polymer Composites via Fused Deposition Modeling. Appl. Sci. 2019, 9, 37. [Google Scholar] [CrossRef]
- Gardner, J.M.; Sauti, G.; Kim, J.-W.; Cano, R.J.; Wincheski, R.A.; Stelter, C.J.; Grimsley, B.W.; Working, D.C.; Siochi, E.J. 3-D printing of multifunctional carbon nanotube yarn reinforced components. Addit. Manuf. 2016, 12, 38–44. [Google Scholar] [CrossRef]
- Qian, L.; Xu, W.; Fan, X.; Wang, C.; Zhang, J.; Zhao, J.; Cui, Z. Electrical and Photoresponse Properties of Printed Thin-Film Transistors Based on Poly(9,9-dioctylfluorene-co-bithiophene) Sorted Large-Diameter Semiconducting Carbon Nanotubes. J. Phys. Chem. C 2013, 117, 18243–18250. [Google Scholar] [CrossRef]
- Tran, T.Q.; Deshpande, S.; Dasari, S.S.; Arole, K.; Johnson, D.; Zhang, Y.; Harkin, E.M.; Djire, A.; Seet, H.L.; Nai, S.M.L.; et al. 3D Printed Carbon Nanotube/Phenolic Composites for Thermal Dissipation and Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2024, 16, 69929–69939. [Google Scholar] [CrossRef]
- Quaresma, L.J.B.; Oliveira, D.S.C.; Dias, R.S.; Alves, K.C.; de Barros, L.G.D.; Pessin, G.; Sinatora, A.; Paraguassu, W.; dos Reis, M.A.L. Anisotropic piezoresistive response of 3D-printed pressure sensor based on ABS/MWCNT nanocomposite. Sci. Rep. 2024, 14, 25297. [Google Scholar] [CrossRef]
- Tran, T.Q.; Sarmah, A.; Harkin, E.M.; Dasari, S.S.; Arole, K.; Cupich, M.J.; Wright, A.J.K.; Seet, H.L.; Nai, S.M.L.; Green, M.J. Radio frequency-assisted curing of on-chip printed CNT/silicone heatsinks produced by material extrusion 3D printing. Addit. Manuf. 2023, 78, 103842. [Google Scholar] [CrossRef]
- Ghoshal, S. Polymer/Carbon Nanotubes (CNT) Nanocomposites Processing Using Additive Manufacturing (Three-Dimensional Printing) Technique: An Overview. Fibers 2017, 5, 40. [Google Scholar] [CrossRef]
- Rymansaib, Z.; Iravani, P.; Emslie, E.; Medvidović-Kosanović, M.; Sak-Bosnar, M.; Verdejo, R.; Marken, F. All-Polystyrene 3D-Printed Electrochemical Device with Embedded Carbon Nanofiber-Graphite-Polystyrene Composite Conductor. Electroanalysis 2016, 28, 1517–1523. [Google Scholar] [CrossRef]
- Saadi, O.W.; Khan, K.A. Advancements in vat photopolymerization for piezoresistive sensors: Materials, mechanisms, and applications. Virtual Phys. Prototyp. 2025, 20, e2505994. [Google Scholar] [CrossRef]
- Gonzalez, G.; Chiappone, A.; Roppolo, I.; Fantino, E.; Bertana, V.; Perrucci, F.; Scaltrito, L.; Pirri, F.; Sangermano, M. Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer 2017, 109, 246–253. [Google Scholar] [CrossRef]
- Lau, G.-K.; Shrestha, M. Ink-Jet Printing of Micro-Electro-Mechanical Systems (MEMS). Micromachines 2017, 8, 194. [Google Scholar] [CrossRef]
- Antonova, I.V. 2D printing technologies using graphene based materials. Phys. Usp. 2017, 60, 204–218. [Google Scholar] [CrossRef]
- Hossain, R.F.; Kaul, A.B. Inkjet-printed MoS2-based field-effect transistors with graphene and hexagonal boron nitride inks. J. Vac. Sci. Technol. B 2020, 38, 042206. [Google Scholar] [CrossRef]
- Saeidi-Javash, M.; Du, Y.; Zeng, M.; Wyatt, B.C.; Zhang, B.; Kempf, N.; Anasori, B.; Zhang, Y. All-Printed MXene–Graphene Nanosheet-Based Bimodal Sensors for Simultaneous Strain and Temperature Sensing. ACS Appl. Electron. Mater. 2021, 3, 2341–2348. [Google Scholar] [CrossRef]
- Jabari, E.; Ahmed, F.; Liravi, F.; Secor, E.B.; Lin, L.; Toyserkani, E. 2D printing of graphene: A review. 2D Mater. 2019, 6, 042004. [Google Scholar] [CrossRef]
- Kwon, S.-N.; Kim, S.-W.; Kim, I.-G.; Hong, Y.K.; Na, S.-I. Direct 3D Printing of Graphene Nanoplatelet/Silver Nanoparticle-Based Nanocomposites for Multiaxial Piezoresistive Sensor Applications. Adv. Mater. Technol. 2019, 4, 1800500. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Z.; Du, K.; Zhao, X.; Chen, W.; Lai, Y.; Li, J. Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 2015, 91, 88–95. [Google Scholar] [CrossRef]
- Guo, H.; Lv, R.; Bai, S. Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 2019, 1, 101–115. [Google Scholar] [CrossRef]
- Ponnamma, D.; Yin, Y.; Salim, N.; Parameswaranpillai, J.; Thomas, S.; Hameed, N. Recent progress and multifunctional applications of 3D printed graphene nanocomposites. Compos. Part B Eng. 2021, 204, 108493. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Fang, Y.; Liu, X.; Raut, A.; Yin, Y.; Sprouster, D.; Tsai, E.; Nitodas, S.; Shmueli, Y.; Sokolov, J.; et al. Utilizing Binary Phase Segregation and Extrusion to Enhance the Electronic Properties of Graphene Nanocomposites. ACS Appl. Mater. Interfaces 2024, 16, 65245–65254. [Google Scholar] [CrossRef]
- Xiao, R.; Ding, M.; Wang, Y.; Gao, L.; Fan, R.; Lu, Y. Stereolithography (SLA) 3D printing of carbon fiber-graphene oxide (CF-GO) reinforced polymer lattices. Nanotechnology 2021, 32, 235702. [Google Scholar] [CrossRef]
- Markandan, K.; Seetoh, I.P.; Lai, C.Q. Mechanical anisotropy of graphene nanocomposites induced by graphene alignment during stereolithography 3D printing. J. Mater. Res. 2021, 36, 4262–4274. [Google Scholar] [CrossRef]
- Ali, M.A.; Hu, C.; Jahan, S.; Yuan, B.; Saleh, M.S.; Ju, E.; Gao, S.-J.; Panat, R. Sensing of COVID-19 Antibodies in Seconds via Aerosol Jet Nanoprinted Reduced-Graphene-Oxide-Coated 3D Electrodes. Adv. Mater. 2021, 33, 2006647. [Google Scholar] [CrossRef]
- Naficy, S.; Jalili, R.; Aboutalebi, S.H.; Gorkin Iii, R.A.; Konstantinov, K.; Innis, P.C.; Spinks, G.M.; Poulin, P.; Wallace, G.G. Graphene oxide dispersions: Tuning rheology to enable fabrication. Mater. Horiz. 2014, 1, 326–331. [Google Scholar] [CrossRef]
- Zhuo, L.; Qinglong, H.; Hao, C.; Yiwen, C.; Chuijin, Z.; Tianyue, X.; Shungui, D.; Chuanfang, Z. Multifunctional MXene inks for printed electrochemical energy storage devices. Energy Mater. 2025, 5, 500005. [Google Scholar] [CrossRef]
- Zhang, S.; Tu, T.; Li, T.; Cai, Y.; Wang, Z.; Zhou, Y.; Wang, D.; Fang, L.; Ye, X.; Liang, B. 3D MXene/PEDOT:PSS Composite Aerogel with a Controllable Patterning Property for Highly Sensitive Wearable Physical Monitoring and Robotic Tactile Sensing. ACS Appl. Mater. Interfaces 2022, 14, 23877–23887. [Google Scholar] [CrossRef]
- Hua, T.; Guo, H.; Qin, J.; Wu, Q.; Li, L.; Qian, B. 3D printing lamellar Ti3C2Tx MXene/graphene hybrid aerogels for enhanced electromagnetic interference shielding performance. RSC Adv. 2022, 12, 24980–24987. [Google Scholar] [CrossRef] [PubMed]
- Eom, W.; Shin, H.; Ambade, R.B.; Lee, S.H.; Lee, K.H.; Kang, D.J.; Han, T.H. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 2020, 11, 2825. [Google Scholar] [CrossRef] [PubMed]
- Ghovvati, M.; Kharaziha, M.; Ardehali, R.; Annabi, N. Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Adv. Healthc. Mater. 2022, 11, 2200055. [Google Scholar] [CrossRef]
- Bigham, A.; Zarepour, A.; Khosravi, A.; Iravani, S.; Zarrabi, A. 3D and 4D printing of MXene-based composites: From fundamentals to emerging applications. Mater. Horiz. 2024, 11, 6257–6288. [Google Scholar] [CrossRef]
- Văduva, M.; Burlănescu, T.; Baibarac, M. Functionalization of Carbon Nanotubes and Graphene Derivatives with Conducting Polymers and Their Applications in Dye-Sensitized Solar Cells and Supercapacitors. Polymers 2024, 16, 53. [Google Scholar] [CrossRef]
- Kumar, S.; Zain Mehdi, S.M.; Taunk, M.; Kumar, S.; Aherwar, A.; Singh, S.; Singh, T. Synergistic effects of polymer integration on the properties, stability, and applications of MXenes. J. Mater. Chem. A 2025, 13, 11050–11113. [Google Scholar] [CrossRef]
- Zhang, K.; Davis, M.; Qiu, J.; Hope-Weeks, L.; Wang, S. Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites. Nanotechnology 2012, 23, 385701. [Google Scholar] [CrossRef] [PubMed]
- Melchert, D.S.; Tahmasebipour, A.; Liu, X.; Mancini, J.; Moran, B.; Giera, B.; Joshipura, I.D.; Shusteff, M.; Meinhart, C.D.; Cobb, C.L.; et al. Anisotropic Thermally Conductive Composites Enabled by Acoustophoresis and Stereolithography. Adv. Funct. Mater. 2022, 32, 2201687. [Google Scholar] [CrossRef]
- Gao, J.; Hao, M.; Wang, Y.; Kong, X.; Yang, B.; Wang, R.; Lu, Y.; Zhang, L.; Gong, M.; Zhang, L.; et al. 3D printing boron nitride nanosheets filled thermoplastic polyurethane composites with enhanced mechanical and thermal conductive properties. Addit. Manuf. 2022, 56, 102897. [Google Scholar] [CrossRef]
- Mills, M.E.; Townsend, P.; Castillo, D.; Martin, S.; Achen, A. Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material. Microelectron. Eng. 1997, 33, 327–334. [Google Scholar] [CrossRef]
- Dobish, J.N.; Hamilton, S.K.; Harth, E. Synthesis of low-temperature benzocyclobutene cross-linker and utilization. Polym. Chem. 2012, 3, 857–860. [Google Scholar] [CrossRef]
- Woehrmann, M.; Toepper, M. Polymerization of Thin Film Polymers. In New Polymers for Special Applications; De Souza Gomes, A., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Perret, E.; Zerounian, N.; David, S.; Aniel, F. Complex permittivity characterization of benzocyclobutene for terahertz applications. Microelectron. Eng. 2008, 85, 2276–2281. [Google Scholar] [CrossRef]
- Modafe, A.; Ghalichechian, N.; Kleber, B.; Ghodssi, R. Electrical Characterization of BCB for Electrostatic Microelectromechanical Devices. MRS Proc. 2011, 782, A5.69. [Google Scholar] [CrossRef]
- Iervolino, F.; Suriano, R.; Scolari, M.; Gelmi, I.; Castoldi, L.; Levi, M. Inkjet Printing of a Benzocyclobutene-Based Polymer as a Low-k Material for Electronic Applications. ACS Omega 2021, 6, 15892–15902. [Google Scholar] [CrossRef]
- Iervolino, F.; Baldini, A.; Gelmi, I.; Castoldi, L.; Suriano, R.; Levi, M. Aerosol Jet Printing of a Benzocyclobutene-Based Ink as Adhesive Material for Wafer Bonding Application. Adv. Mater. Interfaces 2023, 10, 2202183. [Google Scholar] [CrossRef]
- Melai, J.; Salm, C.; Smits, S.; Visschers, J.; Schmitz, J. The electrical conduction and dielectric strength of SU-8. J. Micromech. Microeng. 2009, 19, 065012. [Google Scholar] [CrossRef]
- Ye, S.; Williams, N.X.; Franklin, A.D. Aerosol Jet Printing of SU-8 as a Passivation Layer Against Ionic Solutions. J. Electron. Mater. 2022, 51, 1583–1590. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Wang, P.; Wang, G.; Liu, Y.; Liu, Y.; Li, Q. Selectively Metalizable Stereolithography Resin for Three-Dimensional DC and High-Frequency Electronics via Hybrid Additive Manufacturing. ACS Appl. Mater. Interfaces 2021, 13, 22891–22901. [Google Scholar] [CrossRef]
- Kim, K.; Jung, M.; Kim, B.; Kim, J.; Shin, K.; Kwon, O.-S.; Jeon, S. Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin. Nano Energy 2017, 41, 301–307. [Google Scholar] [CrossRef]
- Mitra, K.Y.; Alalawe, A.; Voigt, S.; Boeffel, C.; Baumann, R.R. Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating Their Suitability for Flexible Electronics. Micromachines 2018, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Andrews, J.B.; Franklin, A.D. Completely Printed, Flexible, Stable, and Hysteresis-Free Carbon Nanotube Thin-Film Transistors via Aerosol Jet Printing. Adv. Electron. Mater. 2017, 3, 1700057. [Google Scholar] [CrossRef]
- Ho, M.; Ramirez, A.B.; Akbarnia, N.; Croiset, E.; Prince, E.; Fuller, G.G.; Kamkar, M. Direct Ink Writing of Conductive Hydrogels. Adv. Funct. Mater. 2025, 35, 2415507. [Google Scholar] [CrossRef]
- Abshirini, M.; Charara, M.; Liu, Y.; Saha, M.; Altan, M.C. 3D Printing of Highly Stretchable Strain Sensors Based on Carbon Nanotube Nanocomposites. Adv. Eng. Mater. 2018, 20, 1800425. [Google Scholar] [CrossRef]
- Jelva Hussan, K.S.; Subramaniam, M.P.; Mohammed Kenz, K.T.; Sreeram, P.; Parvathi, S.; Sari, P.S.; Pullanchiyodan, A.; Mulhivill, D.M.; Raghavan, P. Fabrication and challenges of 3D printed sensors for biomedical applications-Comprehensive review. Results Eng. 2024, 21, 101867. [Google Scholar] [CrossRef]
- Clifford, B.; Beynon, D.; Phillips, C.; Deganello, D. Printed-Sensor-on-Chip devices—Aerosol jet deposition of thin film relative humidity sensors onto packaged integrated circuits. Sens. Actuators B 2018, 255, 1031–1038. [Google Scholar] [CrossRef]
- Herbert, R.; Lim, H.-R.; Yeo, W.-H. Printed, Soft, Nanostructured Strain Sensors for Monitoring of Structural Health and Human Physiology. ACS Appl. Mater. Interfaces 2020, 12, 25020–25030. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.T.; Watkins, J.K.; Phero, T.; Litteken, D.; Tsai, K.; Bingham, T.; Ranganatha, K.L.; Johnson, B.C.; Deng, Z.; Jaques, B.; et al. Aerosol jet printed capacitive strain gauge for soft structural materials. NPJ Flex. Electron. 2020, 4, 32. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, T.; Zhang, M.; Liang, R.; Wang, B. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures. Smart Mater. Struct. 2012, 21, 115008. [Google Scholar] [CrossRef]
- Elsobky, M.; Mahsereci, Y.; Keck, J.; Richter, H.; Burghartz, J.N. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges. Adv. Radio. Sci. 2017, 15, 123–130. [Google Scholar] [CrossRef]
- Blumenthal, T.; Fratello, V.; Nino, G.; Ritala, K. Conformal Printing of Sensors on 3D and Flexible Surfaces Using Aerosol Jet Deposition; SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; SPIE: Bellingham, WA, USA, 2013. [Google Scholar] [CrossRef]
- Borghetti, M.; Serpelloni, M.; Sardini, E. Printed Strain Gauge on 3D and Low-Melting Point Plastic Surface by Aerosol Jet Printing and Photonic Curing. Sensors 2019, 19, 4220. [Google Scholar] [CrossRef]
- Agarwala, S.; Goh, G.L.; Dinh Le, T.-S.; An, J.; Peh, Z.K.; Yeong, W.Y.; Kim, Y.-J. Wearable Bandage-Based Strain Sensor for Home Healthcare: Combining 3D Aerosol Jet Printing and Laser Sintering. ACS Sens. 2019, 4, 218–226. [Google Scholar] [CrossRef]
- Fisher, C.; Skolrood, L.N.; Li, K.; Joshi, P.C.; Aytug, T. Aerosol-Jet Printed Sensors for Environmental, Safety, and Health Monitoring: A Review. Adv. Mater. Technol. 2023, 8, 2300030. [Google Scholar] [CrossRef]
- Zolfagharian, A.; Kouzani, A.Z.; Khoo, S.Y.; Moghadam, A.A.A.; Gibson, I.; Kaynak, A. Evolution of 3D printed soft actuators. Sens. Actuators A Phys. 2016, 250, 258–272. [Google Scholar] [CrossRef]
- Ge, N.; Shan, W.; Liang, L.; Deng, Y.; Wu, L. 3D printing of photochromic and thermochromic shape memory polymers for multi-functional applications. Mater. Res. Express 2023, 10, 095701. [Google Scholar] [CrossRef]
- Portoacă, A.I.; Ripeanu, R.G.; Diniță, A.; Tănase, M. Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance. Polymers 2023, 15, 3419. [Google Scholar] [CrossRef]
- Raviv, D.; Zhao, W.; McKnelly, C.; Papadopoulou, A.; Kadambi, A.; Shi, B.; Hirsch, S.; Dikovsky, D.; Zyracki, M.; Olguin, C.; et al. Active Printed Materials for Complex Self-Evolving Deformations. Sci. Rep. 2014, 4, 7422. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, W.M.; Kang, S.F.; Wu, X.L.; Lu, H.B.; Fu, J.; Cui, H. From 3D to 4D printing: Approaches and typical applications. J. Mech. Sci. 2015, 29, 4281–4288. [Google Scholar] [CrossRef]
- Georgopoulou, A.; Eckey, L.M.; Clemens, F. Soft Chemiresistive Sensing Shields Soft Robotic Actuators from Mechanical Degradation due to Critical Solvent Exposure. Adv. Eng. Mater. 2024, 26, 2301723. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U.; Tariq, A.; Hossain, M.; Ahmed Khan, K.; Umer, R. 3D printing of magneto-active smart materials for advanced actuators and soft robotics applications. Eur. Polym. J. 2024, 205, 112718. [Google Scholar] [CrossRef]
- Chortos, A.; Hajiesmaili, E.; Morales, J.; Clarke, D.R.; Lewis, J.A. 3D Printing of Interdigitated Dielectric Elastomer Actuators. Adv. Funct. Mater. 2020, 30, 1907375. [Google Scholar] [CrossRef]
- Gul, J.Z.; Sajid, M.; Rehman, M.M.; Siddiqui, G.U.; Shah, I.; Kim, K.-H.; Lee, J.-W.; Choi, K.H. 3D printing for soft robotics—A review. Sci. Technol. Adv. Mater. 2018, 19, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Pabst, O.; Hölzer, S.; Beckert, E.; Perelaer, J.; Schubert, U.S.; Eberhardt, R.; Tünnermann, A. Inkjet printed micropump actuator based on piezoelectric polymers: Device performance and morphology studies. Org. Electron. 2014, 15, 3306–3315. [Google Scholar] [CrossRef]
- Kim, K.; Zhu, W.; Qu, X.; Aaronson, C.; McCall, W.R.; Chen, S.; Sirbuly, D.J. 3D Optical Printing of Piezoelectric Nanoparticle–Polymer Composite Materials. ACS Nano 2014, 8, 9799–9806. [Google Scholar] [CrossRef]
- Saengchairat, N.; Tran, T.; Chua, C.-K. A review: Additive manufacturing for active electronic components. Virtual Phys. Prototyp. 2017, 12, 31–46. [Google Scholar] [CrossRef]
- Graddage, N.; Chu, T.-Y.; Ding, H.; Py, C.; Dadvand, A.; Tao, Y. Inkjet printed thin and uniform dielectrics for capacitors and organic thin film transistors enabled by the coffee ring effect. Org. Electron. 2016, 29, 114–119. [Google Scholar] [CrossRef]
- Moon, S.J.; Robin, M.; Wenlin, K.; Yann, M.; Bae, B.S.; Mohammed-Brahim, T.; Jacques, E.; Harnois, M. Morphological impact of insulator on inkjet-printed transistor. Flex. Print. Electron. 2017, 2, 035008. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Kawase, T.; Friend, R.H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E.P. High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. Science 2000, 290, 2123–2126. [Google Scholar] [CrossRef]
- An, H.S.; Park, Y.-G.; Kim, K.; Nam, Y.S.; Song, M.H.; Park, J.-U. High-Resolution 3D Printing of Freeform, Transparent Displays in Ambient Air. Adv. Sci. 2019, 6, 1901603. [Google Scholar] [CrossRef]
- Mdallal, A.; Yasin, A.; Mahmoud, M.; Abdelkareem, M.A.; Alami, A.H.; Olabi, A.G. A comprehensive review on solar photovoltaics: Navigating generational shifts, innovations, and sustainability. Sustain. Horiz. 2025, 13, 100137. [Google Scholar] [CrossRef]
- Yelshibay, A.; Bukari, S.D.; Baptayev, B.; Balanay, M.P. Conducting Polymers in Solar Cells: Insights, Innovations, and Challenges. Organics 2024, 5, 640–669. [Google Scholar] [CrossRef]
- Esa, Z.; Nauman, M.M.; Jin, L.; Khalid, M.U.; Hj Zaini, J.; Iqbal, A.; Ali, K.; Aïssa, B.; Rosei, F. An additive manufacturing approach based on electrohydrodynamic printing to fabricate P3HT:PCBM thin films. Sci. Rep. 2023, 13, 16319. [Google Scholar] [CrossRef]
- Jung, S.; Sou, A.; Banger, K.; Ko, D.-H.; Chow, P.C.Y.; McNeill, C.R.; Sirringhaus, H. All-Inkjet-Printed, All-Air-Processed Solar Cells. Adv. Energy Mater. 2014, 4, 1400432. [Google Scholar] [CrossRef]
- Eggenhuisen, T.M.; Galagan, Y.; Biezemans, A.F.K.V.; Slaats, T.M.W.L.; Voorthuijzen, W.P.; Kommeren, S.; Shanmugam, S.; Teunissen, J.P.; Hadipour, A.; Verhees, W.J.H.; et al. High efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. A 2015, 3, 7255–7262. [Google Scholar] [CrossRef]
- Gracias, A.; Tokranova, N.; Thelen, B.C.M.; Castracane, J. Influence of diamond nanoparticles on the thermal properties of benzocyclobutene (BCB). Phys. Status Solidi 2011, 208, 684–690. [Google Scholar] [CrossRef]
- Zoschke, K.; Wolf, J.; Ehrmann, O.; Toepper, M.; Reichl, H. Copper/benzocyclobutene multi layer wiring-A flexible base technology for wafer level integration of passive components. In Proceedings of the 2007 9th Electronics Packaging Technology Conference, Singapore, 10–12 December 2007; pp. 295–302. [Google Scholar] [CrossRef]
- Oberhammer, J.; Niklaus, F.; Stemme, G. Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities. Sens. Actuators A Phys. 2003, 105, 297–304. [Google Scholar] [CrossRef]
- Riera-Galindo, S.; Leonardi, F.; Pfattner, R.; Mas-Torrent, M. Organic Semiconductor/Polymer Blend Films for Organic Field-Effect Transistors. Adv. Mater. Technol. 2019, 4, 1900104. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Z.; Yu, M.; Zhang, X.; Xu, Y.; Lv, P.; Chu, S.; Liu, C.; Lai, W.Y.; Huang, W. Iridium(III)-Complexed Polydendrimers for Inkjet-Printing OLEDs: The Influence of Solubilizing Steric Hindrance Groups. ACS Appl. Mater. Interfaces 2019, 11, 26174–26184. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, J.; Qian, L.; Han, X.; Wu, L.; Wu, W.; Song, M.; Zhou, L.; Su, W.; Wang, C.; et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale 2014, 6, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, R.; Angeli, M.C.; Mantica, F.; Carniani, D.; Magagnin, L. SU-8 inkjet patterning for microfabrication. Polymer 2019, 185, 121933. [Google Scholar] [CrossRef]
- Soni, M.; Bhattacharjee, M.; Ntagios, M.; Dahiya, R. Printed Temperature Sensor Based on PEDOT: PSS-Graphene Oxide Composite. IEEE Sens. J. 2020, 20, 7525–7531. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef]
- Jucius, D.; Gudaitis, R.; Lazauskas, A.; Grigaliūnas, V. Electrical Characterization of Thin PEDOT:PSS Films on Alumina and Thiol–Ene Substrates. Polymers 2021, 13, 3519. [Google Scholar] [CrossRef]
- Advances in Reliability of Conducting Polymer Based Capacitors in High Humidity Environment. Available online: https://www.kemet.com/en/us/technical-resources/advances-in-reliability-of-conducting-polymer-based-capacitors-in-high-humidity-environment.html (accessed on 20 June 2025).
- Yan, Y.; Jiang, Y.; Ng, E.L.L.; Zhang, Y.; Owh, C.; Wang, F.; Song, Q.; Feng, T.; Zhang, B.; Li, P.; et al. Progress and opportunities in additive manufacturing of electrically conductive polymer composites. Mater. Today Adv. 2023, 17, 100333. [Google Scholar] [CrossRef]
- Omidian, H. AI-powered breakthroughs in material science and biomedical polymers. J. Bioact. Compat. Polym. 2024, 40, 161–174. [Google Scholar] [CrossRef]
- Nikooharf, M.H.; Shirinbayan, M.; Arabkoohi, M.; Bahlouli, N.; Fitoussi, J.; Benfriha, K. Machine learning in polymer additive manufacturing: A review. Int. J. Mater. Form. 2024, 17, 52. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Liu, L.; Nasar, N.K.A.; Gu, X.; Davis, T.P.; Zheng, X.; Wang, L.; Qiao, R. Fabrication of Organic/Inorganic Nanocomposites: From Traditional Synthesis to Additive Manufacturing. Adv. Mater. 2025, 2505504. [Google Scholar] [CrossRef]
- Scheideler, W.J.; Im, J. Recent Advances in 3D Printed Electrodes—Bridging the Nano to Mesoscale. Adv. Sci. 2025, 12, 2411951. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Kayode, J.F.; Akinyoola, J.O.; Ikumapayi, O.M. Shape memory polymer review for flexible artificial intelligence materials of biomedical. Mater. Chem. Phys. 2023, 293, 126930. [Google Scholar] [CrossRef]
- Crespo-Miguel, J.; Garcia-Gonzalez, D.; Robles, G.; Hossain, M.; Martinez-Tarifa, J.M.; Arias, A. Thermo-electro-mechanical aging and degradation of conductive 3D printed PLA/CB composite. Compos. Struct. 2023, 316, 116992. [Google Scholar] [CrossRef]
- Han, W.B.; Hwang, S.-W.; Yeo, W.-H. Recent advances in encapsulation strategies for flexible transient electronics. Flex. Print. Electron. 2024, 9, 033001. [Google Scholar] [CrossRef]
- Słoma, M. 3D printed electronics with nanomaterials. Nanoscale 2023, 15, 5623–5648. [Google Scholar] [CrossRef]
- Mondol, K.; Hasan, M.; Hasib Siddique, A.; Islam, S. Quantization, gate dielectric and channel length effect in double-gate tunnel field-effect transistor. Results Phys. 2022, 34, 105312. [Google Scholar] [CrossRef]
- Areias, C.; Akyurtlu, A. An Examination of Aerosol Jet-Printed Surface Roughness and its Impact on the Performance of High-Frequency Electronics. Adv. Eng. Mater. 2025, 2402715. [Google Scholar] [CrossRef]
- Sridhar, A.; van Dijk, D.J.; Akkerman, R. Inkjet printing and adhesion characterisation of conductive tracks on a commercial printed circuit board material. Thin Solid. Film. 2009, 517, 4633–4637. [Google Scholar] [CrossRef]
- Eng, H.; Maleksaeedi, S.; Yu, S.; Choong, Y.Y.C.; Wiria, F.E.; Kheng, R.E.; Wei, J.; Su, P.-C.; Tham, H.P. Development of CNTs-filled photopolymer for projection stereolithography. Rapid Prototyp. J. 2017, 23, 129–136. [Google Scholar] [CrossRef]
- Shah, M.; Ullah, A.; Azher, K.; Rehman, A.U.; Juan, W.; Aktürk, N.; Tüfekci, C.S.; Salamci, M.U. Vat photopolymerization-based 3D printing of polymer nanocomposites: Current trends and applications. RSC Adv. 2023, 13, 1456–1496. [Google Scholar] [CrossRef]
- Cordonier, G.J.; Sierros, K.A. Unconventional Application of Direct Ink Writing: Surface Force-Driven Patterning of Low Viscosity Inks. ACS Appl. Mater. Interfaces 2020, 12, 15875–15884. [Google Scholar] [CrossRef]
- Doddapaneni, V.V.K.; Song, C.; Dhas, J.A.; Cheng, N.; Camp, I.; Chang, A.; Pan, C.; Paul, B.K.; Pasebani, S.; Feng, Z.; et al. Beyond Solution-Based Printing: Unveiling Innovations and Advancements in Solvent-Free Printing Technologies. Adv. Funct. Mater. 2025, 35, 2423498. [Google Scholar] [CrossRef]
Technology | SL | DIW | LIFT | IJP | AJP |
---|---|---|---|---|---|
Materials | PEDOT:PSS | PEDOT:PSS | PEDOT:PSS | PEDOT:PSS | BCB |
CNT nanocomposite | CNT nanocomposite | BCB | SU-8 | ||
Graphene nanocomposites | Graphene nanocomposites | Graphene nanocomposites | CNT nanocomposites | ||
Resolution | 100 µm | 200 µm | 20 µm | 50 µm | 75 µm |
Viscosity | Up to 5 Pa·s | Up to thousands of Pa·s | Wide range of viscosities | Maximum 0.005–0.01 mPa·s | For ultrasonic atomisation, a maximum of 0.01 Pa·s |
Shear thinning behaviour | Both Newtonian and non-Newtonian behaviours | For pneumatic atomisation, a maximum 1 Pa·s | |||
Advantages | Relatively high resolution in z-direction | Suitable for all types of inks | Suitable for all types of inks | Suitable for all types of inks | Suitable for all types of inks |
Mechanically stable material | Suitable for high-viscosity inks | High printing speed | High fabrication speed | Can process inks with different viscosities | |
Can process inks with different viscosities | Versatility in terms of resolution | ||||
Limitations | Fabrication speed is low | Low resolution | Material needs to be coated on a donor substrate | Suitable only for low-viscosity inks | Ink formulation is critical |
Limited to UV-curable materials | Limited to shear thinning materials | Expensive equipment | Not suitable for 3D structures | Overspray | |
Applications | Volatile organic compound sensors; 3D high-frequency devices | Piezoresistive sensors; Microcapacitors; Tissue engineering | OLED fabrication; Micro-battery electrodes; Biomolecule printing | Sensors; OFETs; OSCs; Wafer bonding | Sensors, Transistors, Wafer bonding |
References | [48,51,110,134] | [23,47,54,105] | [41] | [49,102,130,135,136] | [103,131,133,137] |
Application | Material | AM Technology | Highlights | Reference |
---|---|---|---|---|
Strain sensor | CNT nanocomposite | AJP | High mechanical durability | [54,104,139] |
Graphene nanocomposites | IJP | Relatively high electrical conductivity | ||
PEDOT:PSS | DIW | |||
Sensor for human health monitoring | Silver nanocomposites | SL | Relatively high conductivity | [53,142] |
PEDOT:PSS | AJP | Poor mechanical properties | ||
Actuators | CNT | SL | High electrical conductivity | [150,157] |
Graphene nanocomposites | DIW | |||
Thin-film transistor | PEDOT:PSS | SL | High performance | [92,174] |
LIFT | High resolution | |||
OLED | PEDOT:PSS | SL | Low viscosity | [165,175,176] |
IJP | High resolution | |||
High performance | ||||
OSCs | PEDOT:PSS | IJP | Freedom of design | [168,169,170] |
P3HT:PCBM | EHD | Low efficiency | ||
Wafer bonding | BCB | IJP | Good resolution | [130,131] |
AJP | Ink viscosity is critical | |||
Overspray for AJP | ||||
Packaging | SU-8 | IJP | Good printing quality | [133,177] |
AJP | Presence of overspray |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iervolino, F.; Suriano, R.; Cavallaro, M.; Castoldi, L.; Levi, M. Additively Manufactured Polymers for Electronic Components. Appl. Sci. 2025, 15, 8689. https://doi.org/10.3390/app15158689
Iervolino F, Suriano R, Cavallaro M, Castoldi L, Levi M. Additively Manufactured Polymers for Electronic Components. Applied Sciences. 2025; 15(15):8689. https://doi.org/10.3390/app15158689
Chicago/Turabian StyleIervolino, Filippo, Raffaella Suriano, Marco Cavallaro, Laura Castoldi, and Marinella Levi. 2025. "Additively Manufactured Polymers for Electronic Components" Applied Sciences 15, no. 15: 8689. https://doi.org/10.3390/app15158689
APA StyleIervolino, F., Suriano, R., Cavallaro, M., Castoldi, L., & Levi, M. (2025). Additively Manufactured Polymers for Electronic Components. Applied Sciences, 15(15), 8689. https://doi.org/10.3390/app15158689