Investigation on Structural Performance of Integral Steel Wall Plate Structure in Cable–Pylon Anchorage Zone
Abstract
1. Introduction
2. Performance of IWP with Steel Anchor Beam
2.1. Experimental Program
2.2. Experimental Results
2.2.1. Stress of the Steel Plate
2.2.2. Stress of the Rebar
2.2.3. Deformation at Steel–Concrete Interface
2.2.4. Comparison Between IWP Specimen and PBL Specimen
2.3. FE Analysis and Results
2.3.1. FE Model of the IWP Test Model
2.3.2. Model Validation
2.3.3. Results and Discussion
3. Performance of IWP with Steel Anchor Box
3.1. FE Analysis Results and Performance Comparison
3.1.1. FE Model
3.1.2. Utilization Rate of Steel Anchor Box
3.1.3. Maximum Principal Stress Distribution in Pylon Wall
3.1.4. Stress State at the Steel–Concrete Interface
3.2. Parametric Study
3.2.1. Effect of Perforated Side Plate Thickness
3.2.2. Effect of End Plate Thickness
3.2.3. Effect of Surface Plate Thickness
3.2.4. Effect of Hole Diameter of Perfobond Connector
3.2.5. Effect of Shear Connector Arrangement
4. Conclusions
- The IWP exhibits excellent stiffness and pull-out resistance, with significant tensile forces observed in the perfobond connectors. For the steel anchor beam configuration, relative deformation between the end plate and the pylon wall increased linearly with load up to 1.2 times the design load P, with no visible cracking observed below 2.5P. FE results confirm that stress levels in both the steel and concrete components remain within allowable limits. In the steel anchor box configuration, the IWP secures the steel anchor box utilization at 74% and reduces the principal tensile stress on the outer pylon wall by approximately 1.5 MPa, with stresses vanishing beyond 0.6 times the wall thickness—unlike conventional internal or exposed types.
- The IWP design promotes consistent and efficient force transfer through the combined action of end, side, and surface plates. Perfobond connectors primarily experience unidirectional shear, with longitudinal-to-vertical shear ratios remaining below 0.21. Parametric studies reveal that connector arrangement, perforated hole diameter, and side plate thickness significantly affect the distribution of vertical and shear forces. Increasing end or surface plate thickness slightly reduces anchor box utilization and tensile stress in the pylon wall, which can be beneficial for optimizing design against fatigue effects in long-term service.
- This study is based on a down-scale model experiment. Scaling effects and simplified boundary conditions may influence accuracy in real applications. Future work should include FE simulations incorporating detailed wall reinforcement, dynamic loading, and long-term fatigue and creep effects. These would offer more comprehensive guidance for practical design standards, especially for large-scale bridge pylons subjected to high cable forces.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Svensson, H. Cable-Stayed Bridges: 40 Years of Experience Worldwide; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Svensson, H.; Jordet, E. The concrete cable-stayed helgeland bridge in Norway. Proc. Inst. Civ. Eng.-Civ. Eng. 1997, 120, 83. [Google Scholar] [CrossRef]
- Podolny, W.; Scalzi, J.B. Construction and Design of Cable-Stayed Bridges; John Wiley & Sons INC.: Hoboken, NJ, USA, 1986; Available online: https://trid.trb.org/View/49614 (accessed on 8 May 2025).
- Shi, X.; Pan, H.; Liu, Z.; Hu, K.; Zhou, J. Performance of a U-shaped anchoring syst em for cable-stayed bridges. Structures 2022, 42, 268–283. [Google Scholar] [CrossRef]
- Bayraktar, A.; Türker, T.; Tadla, J.; Kurşun, A.; Erdiş, A. Static and dynamic field load testing of the long span Nissibi cable-stayed bridge. Soil. Dyn. Earthq. Eng. 2017, 94, 136–157. [Google Scholar] [CrossRef]
- Lu, W.; Zhao, M.; Jia, L. Mechanical Behavior of a Multisegmented Tower Anchorage Structure with an Exposed Steel Anchor Box. Adv. Mater. Sci. Eng. 2021, 2021, 5599845. [Google Scholar] [CrossRef]
- Su, Q.-T.; Yang, G.-T.; Qin, F.; Wu, C. Investigation on the horizontal mechanical behavior of steel-concrete composite cable-pylon anchorage. J. Constr. Steel Res. 2012, 72, 267–275. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Y.; Lu, C. Analysis on the stress mechanism of the exposed steel anchor box composite cable–pylon anchorage structure. Eng. Struct. 2023, 28, 115816. [Google Scholar] [CrossRef]
- Zhu, L.D.; Bai, Z.Z.; Chen, D.W. Mechanical Analysis of the Anchorage Zone of Pylon for Xinjiang Cable-Stayed Bridge Based on Refined Finite Element Model. Adv. Mater. Res. 2013, 663, 172–176. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Li, X.; You, X.P. Construction Technology of Jiu-Jiang Yangtze River Highway Bridge, Applied Mechanics and Materials. Appl. Mech. Mater. 2014, 501–504, 1274–1278. [Google Scholar] [CrossRef]
- Pallarés, L.; Hajjar, J.F. Headed steel stud anchors in composite structures, Part I: Shear. J. Constr. Steel Res. 2010, 66, 198–212. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Q.; Yao, Y.; Qi, J.; Xiu, H. Static behavior of grouped large headed stud-UHPC shear connectors in composite structures. Compos. Struct. 2018, 206, 202–214. [Google Scholar] [CrossRef]
- Wen, C.; Bradford, M.A.; Yang, G. Long-term behaviour of stud connections in composite structures. Eng. Struct. 2024, 313, 118266. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.; Zhang, F.; Wang, Z.; Zhang, N.; Wang, J. Prediction of shear strength of studs embedded in UHPC based on an interpretable machine learning method. Steel Compos. Struct. 2025, 54, 97–110. [Google Scholar] [CrossRef]
- Han, Q.; Wang, Y.; Xu, J.; Xing, Y. Static behavior of stud shear connectors in elastic concrete–steel composite beams. J. Constr. Steel Res. 2015, 113, 115–126. [Google Scholar] [CrossRef]
- Liang, C.; Liu, Y.; Chen, S.; Lu, C. Study on the threshold interfacial shear stiffness of simply supported composite girders. Eng. Struct. 2022, 268, 114736. [Google Scholar] [CrossRef]
- Ye, H.; Huang, R.; Tang, S.; Zhou, Y.; Liu, J. Determination of shear stiffness for headed-stud shear connectors using energy balance approach. Steel Compos. Struct. 2022, 42, 477–487. [Google Scholar] [CrossRef]
- Qin, X.; Yang, G. Hysteretic model for stud connection in composite structures. Steel Compos. Struct. 2023, 47, 587–599. [Google Scholar] [CrossRef]
- Martin, L.A.; Yousif, Z.; Campbell, B.L.; Furrer, M.; Chynoweth, M. Planning and design of the Gordie Howe International Bridge, North America. Proc. Inst. Civ. Eng.-Br. 2023, 176, 233–249. [Google Scholar] [CrossRef]
- Shariati, M.; Sulong, N.H.R.; Shariati, A.; Kueh, A.B.H. Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study. Constr. Build. Mater. 2016, 120, 382–392. [Google Scholar] [CrossRef]
- Yan, J.-B.; Hu, H.; Wang, T. Shear behaviour of novel enhanced C-channel connectors in steel-concrete-steel sandwich composite structures. J. Constr. Steel Res. 2020, 166, 105903. [Google Scholar] [CrossRef]
- Kopp, M.; Wolters, K.; Claßen, M.; Hegger, J.; Gündel, M.; Gallwoszus, J.; Heinemeyer, S.; Feldmann, M. Composite dowels as shear connectors for composite beams—Background to the design concept for static loading. J. Constr. Steel Res. 2018, 147, 488–503. [Google Scholar] [CrossRef]
- Lacki, P.; Derlatka, A.; Kasza, P.; Gao, S. Numerical study of steel–concrete composite beam with composite dowels connectors. Comput. Struct. 2021, 255, 106618. [Google Scholar] [CrossRef]
- Classen, M.; Hegger, J. Anchorage of composite dowels. Steel Constr. 2016, 9, 138–150. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Wang, H.; Shi, F.; Liu, J.; Jiang, L. Tensile stiffness of perfobond rib connectors in steel–concrete composite pylon of bridges. Eng. Struct. 2023, 284, 115931. [Google Scholar] [CrossRef]
- Zou, Y.; Di, J.; Zhou, J.; Zhang, Z.; Li, X.; Zhang, H.; Qin, F. Shear behavior of perfobond connectors in the steel-concrete joints of hybrid bridges. J. Constr. Steel Res. 2020, 172, 106217. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, C.; Shu, Y.; Deng, K.; Cui, B.; Su, Y. Full-scale test and simulation of a PBL anchorage system for suspension bridges. Struct. Infrastruct. Eng. 2020, 16, 452–464. [Google Scholar] [CrossRef]
- Utashev, N.; Wang, Q.Y.; Wang, Z.Y.; Durdyev, S.; Tufail, R.F. Anchorage of Perfobond Leiste shaped shear connector composite dowel with carbon fibre reinforced polymer. J. Build. Eng. 2021, 34, 101711. [Google Scholar] [CrossRef]
- Li, J.; Xiong, Z.; Wang, T. Study on Seismic Performance of a Novel Energy Dissipation Joint Based on CL Composite Dowels. Procedia Struct. Integr. 2024, 66, 221–228. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, J.; Mou, X.; Wang, T.; Baktheer, A.; Feldmann, M. Experimental and theoretical study of thin-covered composite dowels considering multiple load conditions. Eng. Struct. 2025, 331, 119979. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Yuan, H.; Lu, C. Experimental and FEM study on the feasibility of PBL connectors in the composite cable-pylon anchorage zone of cable-stayed bridge. Structures 2024, 67, 106973. [Google Scholar] [CrossRef]
- Carreira, D.J.; Chu, K.-H. Stress-Strain Relationship for Plain Concrete in Compression. ACI J. 1985, 82, 797–804. [Google Scholar] [CrossRef]
- Cornelissen, H.A.W.; Hordijk, D.; Reinhardt, H. Experimental Determination of crack softening characteristics of normalweight and lightweight concrete. Heron 1986, 31, 45–56. [Google Scholar]
Plate Thickness | Perfobond Connector | Rebar | ||||||
---|---|---|---|---|---|---|---|---|
End Plate | Surface Plate | Side Plate | Circular Hole | Long Hole (Long. × Trans.) | Spacing | Longitudinal | Transverse | |
Prototype | 30 | 30 | 20 | φ60 | 60 × 35 | 300 | Φ36@200 | Φ28@300 |
Model | 16 | 16 | 10 | φ30 | 30 × 17.5 | 150 | Φ18@100 | Φ14@150 |
Concrete | Steel Plate | Rebar | |
---|---|---|---|
Young’s modulus (MPa) | - | 2.0 × 105 | 1.95 × 105 |
Compressive strength (MPa) | 42.7 | - | - |
Tensile (yielding) strength (MPa) | 3.92 | 430 | 335 |
Ultimate tensile strength (MPa) | - | 558 | - |
Steel | Concrete | |||
---|---|---|---|---|
Global Size (mm) | Layer Through Thickness | Global Size (mm) | Local Size at Steel–Concrete Interface (mm) | |
Coarse mesh | 30 | 3 | 60 | 30 |
Regular mesh | 20 | 4 | 40 | 20 |
Fine mesh | 15 | 6 | 25 | 15 |
Concrete | Steel | Prestress Tendon | Stud | PBL Connector | ||
---|---|---|---|---|---|---|
Modulus of elasticity | 34.5 GPa | 210.0 GPa | 195.0 GPa | Diameter | 22 mm | 70 mm |
Poisson ratio | 0.2 | 0.3 | 0.3 | Shear Stiffness | 302 kN/mm | 543 kN/mm |
Section Number | Horizontal Cable Force/kN | Horizontal Load/kN | Proportion/% | ||||
---|---|---|---|---|---|---|---|
Internal | Exposed | IWP | Internal | Exposed | IWP | ||
1 | 14,678 | 7045 | 7339 | 7045 | 48 | 50 | 48 |
2 | 14,678 | 10,715 | 9247 | 10,568 | 73 | 63 | 72 |
3 | 13,272 | 11,148 | 9158 | 11,016 | 84 | 69 | 83 |
4 | 13,272 | 11,016 | 9025 | 11,016 | 83 | 68 | 83 |
5 | 13,272 | 11,281 | 8892 | 11,281 | 85 | 67 | 85 |
Average | 13,834 | 10,376 | 8715 | 10,237 | 75 | 63 | 74 |
Section Number | Internal | Exposed | IWP | ||
---|---|---|---|---|---|
End Plate | Side Plate | Side Plate | End Plate | Surface Plate | |
1 | 100 | 100 | 68 | 23 | 9 |
2 | 100 | 100 | 71 | 25 | 4 |
3 | 100 | 100 | 72 | 25 | 3 |
4 | 100 | 100 | 72 | 24 | 4 |
5 | 100 | 100 | 71 | 24 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Liu, Y.; Liu, Y.; Lu, C. Investigation on Structural Performance of Integral Steel Wall Plate Structure in Cable–Pylon Anchorage Zone. Appl. Sci. 2025, 15, 8672. https://doi.org/10.3390/app15158672
Liang C, Liu Y, Liu Y, Lu C. Investigation on Structural Performance of Integral Steel Wall Plate Structure in Cable–Pylon Anchorage Zone. Applied Sciences. 2025; 15(15):8672. https://doi.org/10.3390/app15158672
Chicago/Turabian StyleLiang, Chen, Yuqing Liu, Yimin Liu, and Chi Lu. 2025. "Investigation on Structural Performance of Integral Steel Wall Plate Structure in Cable–Pylon Anchorage Zone" Applied Sciences 15, no. 15: 8672. https://doi.org/10.3390/app15158672
APA StyleLiang, C., Liu, Y., Liu, Y., & Lu, C. (2025). Investigation on Structural Performance of Integral Steel Wall Plate Structure in Cable–Pylon Anchorage Zone. Applied Sciences, 15(15), 8672. https://doi.org/10.3390/app15158672