Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco
Abstract
1. Introduction
2. Materials and Methods
2.1. Hardware Design
2.2. PTP Implementation
2.3. Software Design
2.4. System Performance Evaluation
2.4.1. Stability Evaluation of Visible and Thermal Image Acquisition
2.4.2. Stability Evaluation of Point Cloud Acquisition
2.5. Experimental Design
3. Results
3.1. Time Synchronization
3.2. Crop Phenotype Parameter Acquisition Performance
3.2.1. System Stability
3.2.2. Dynamic Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, H.; Murengami, B.G.; Jiang, L.; Chen, C.; Johnson, C.; Cheein, F.A.; Fountas, S.; Li, H.; Fu, L. Automated segmentation of individual leafy potato stems after canopy consolidation using YOLOv8x with spatial and spectral features for UAV-based dense crop identification. Comput. Electron. Agric. 2024, 219, 108795. [Google Scholar] [CrossRef]
- Rui, Z.; Zhang, Z.; Zhang, M.; Azizi, A.; Igathinathane, C.; Cen, H.; Vougioukas, S.; Li, H.; Zhang, J.; Jiang, Y.; et al. High-throughput proximal ground crop phenotyping systems—A comprehensive review. Comput. Electron. Agric. 2024, 224, 109108. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Zhao, Y.; Wen, W.; Wang, C.; Lu, X.; Guo, M.; Guo, X.; Zhao, J.; Zhao, C. Using high-throughput phenotyping platform MVS-Pheno to decipher the genetic architecture of plant spatial geometric 3D phenotypes for maize. Comput. Electron. Agric. 2024, 225, 109259. [Google Scholar] [CrossRef]
- Jafarbiglu, H.; Pourreza, A. A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. Comput. Electron. Agric. 2022, 197, 106844. [Google Scholar] [CrossRef]
- Li, D.; Yang, S.; Du, Z.; Xu, X.; Zhang, P.; Yu, K.; Zhang, J.; Shu, M. Application of unmanned aerial vehicle optical remote sensing in crop nitrogen diagnosis: A systematic literature review. Comput. Electron. Agric. 2024, 227, 109565. [Google Scholar] [CrossRef]
- Su, M.; Zhou, D.; Yun, Y.; Ding, B.; Xia, P.; Yao, X.; Ni, J.; Zhu, Y.; Cao, W. Design and implementation of a high-throughput field phenotyping robot for acquiring multisensor data in wheat. Plant Phenomics 2025, 7, 100014. [Google Scholar] [CrossRef]
- Yu, S.; Liu, X.; Tan, Q.; Wang, Z.; Zhang, B. Sensors, systems and algorithms of 3D reconstruction for smart agriculture and precision farming: A review. Comput. Electron. Agric. 2024, 224, 109229. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, L.; Zhang, F.; Bai, Y.; Chen, X.; Gao, Y.; Zou, D.; Lu, X. Time synchronization between satellites via inter-satellite link observations of BDS-3 Constellation: Method, experiment and analysis. Measurement 2024, 224, 113855. [Google Scholar] [CrossRef]
- Idrees, Z.; Granados, J.; Sun, Y.; Latif, S.; Gong, L.; Zou, Z.; Zheng, L. IEEE 1588 for Clock Synchronization in Industrial IoT and Related Applications: A Review on Contributing Technologies, Protocols and Enhancement Methodologies. IEEE Access 2020, 8, 155660–155678. [Google Scholar] [CrossRef]
- Kälin, U.; Staffa, L.; Grimm, D.E.; Wendt, A. Highly Accurate Pose Estimation as a Reference for Autonomous Vehicles in Near-Range Scenarios. Remote. Sens. 2021, 14, 90. [Google Scholar] [CrossRef]
- Khan, M.A.; Hayes, B.P. IEEE 1588 Time Synchronization in Power Distribution System Applications: Timestamping and Accuracy Requirements. IEEE Syst. J. 2023, 17, 2007–2017. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, Y.; Zhang, C.; Niu, Y.; Wang, Z.; Zhang, H. A multi-sensor fusion approach for maritime autonomous surface ships berthing navigation perception. Ocean Eng. 2025, 316, 119965. [Google Scholar] [CrossRef]
- Stastny, L.; Franek, L.; Jirgl, M.; Misik, S.; Bradac, Z. Time Synchronization in Power-line Communication. IFAC-PapersOnLine 2015, 48, 83–88. [Google Scholar] [CrossRef]
- Seijo, O.; Val, I.; Lopez-Fernandez, J.A. Portable Full Channel Sounder for Industrial Wireless Applications With Mobility by Using Sub-Nanosecond Wireless Time Synchronization. IEEE Access 2020, 8, 175576–175588. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Feng, L.; Wang, J.; Yang, Y.; Bao, J.; Li, B.; Wu, L. Hardware-Based Time Synchronization for a Multi-Sensor System. In Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 14–18 October 2024; pp. 4600–4607. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Chu, Y.-S.; Lo, D.-W.; Chiang, Y.-T.; Hou, T.-C. Chip Design of PTP Time Synchronization for Industrial IoT. IEEE Access 2025, 13, 21966–21979. [Google Scholar] [CrossRef]
- Shinohara, M.; Yamada, T.; Uehira, K.; Sakai, S.; Shiobara, H.; Kanazawa, T. Development and Operation of an Ocean Bottom Cable Seismic and Tsunami (OBCST) Observation System in the Source Region of the Tohoku-oki Earthquake. Earth Space Sci. 2021, 8, e2020EA001359. [Google Scholar] [CrossRef]
- Venmani, D.P.; Zerradi, F.; Hamma, F.; Jahan, B.; Singh, K. Timing-As-A-Service (TAAS): Over-the-Air Synchronization method for Industrial IoT. In Proceedings of the 2024 IEEE Virtual Conference on Communications (VCC), NY, USA, 3–5 December 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H. Robust Clock Parameters Tracking for IEEE 1588 With Asymmetric Packet Delays in Industrial Networks. IEEE Trans. Commun. 2025, 73, 1248–1261. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer–a case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Ganeva, D.; Roumenina, E.; Dimitrov, P.; Gikov, A.; Jelev, G.; Dragov, R.; Bozhanova, V.; Taneva, K. Phenotypic Traits Estimation and Preliminary Yield Assessment in Different Phenophases of Wheat Breeding Experiment Based on UAV Multispectral Images. Remote Sens. 2022, 14, 1019. [Google Scholar] [CrossRef]
- Volpato, L.; Pinto, F.; González-Pérez, L.; Thompson, I.G.; Borém, A.; Reynolds, M.; Gérard, B.; Molero, G.; Rodrigues, F.A., Jr. High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation. Front. Plant Sci. 2021, 12, 591587. [Google Scholar] [CrossRef] [PubMed]
- SZ DJI Technology Co., Ltd. DJI Avata 2 Quick Start Guide. Available online: https://www.dji.com/cn/avata-2/downloads (accessed on 17 March 2024).
- Nuka, S.M.; Pothupogu, P.; Rajan, N.; Kazaz, Y. Performance Evaluation of PTP in Switched Ethernet Networks. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Ma, H.; Wen, W.; Gou, W.; Lu, X.; Fan, J.; Zhang, M.; Liang, Y.; Gu, S.; Guo, X. 3D time-series phenotyping of lettuce in greenhouses. Biosyst. Eng. 2025, 250, 250–269. [Google Scholar] [CrossRef]
- Rodrigues, S.; Lv, J. Synchronization in Time-Sensitive Networking: An Introduction to IEEE Std 802.1AS. IEEE Commun. Stand. Mag. 2022, 6, 14–20. [Google Scholar] [CrossRef]
- Martini, M. A Simple Relationship Between SSIM and PSNR for DCT-Based Compressed Images and Video: SSIM as Content-Aware PSNR. In Proceedings of the 2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), Poitiers, France, 27–29 September 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Setiadi, D.R.I.M. PSNR vs SSIM: Imperceptibility quality assessment for image steganography. Multimed. Tools Appl. 2021, 80, 8423–8444. [Google Scholar] [CrossRef]
- Ren, C.; Huang, X.; Ogai, H. Lane Detection Based on Deep Learning and SSIM Method. In Proceedings of the 2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 20–21 August 2022; pp. 48–51. [Google Scholar] [CrossRef]
- Cui, S.; Xu, M.; Ma, A.; Zhong, Y. Modality-Free Feature Detector and Descriptor for Multimodal Remote Sensing Image Registration. Remote. Sens. 2020, 12, 2937. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Comput. Electron. Agric. 2020, 174, 105446. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, J.; Liu, S.; Ding, L.; Zhang, J.; Wang, S.; Lei, T. Investigation and evaluation of algorithms for unmanned aerial vehicle multispectral image registration. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102403. [Google Scholar] [CrossRef]
No. | Item | Model | Main Parameters | Equipment Picture |
---|---|---|---|---|
1 | Main Control Board | Xunwei iTOP-RK3588 | CPU: ROCKCHIP RK3588 Octa-Core A76+A55 Main Frequency: 2 GHz Memory: 16 GB GPU: integrated Mali G610 3D quad-core GPU 2-way 1000 Mbps Ethernet, RJ45 port, etc. | |
2 | PTP Switch | SYN2421 IEEE1588 Industrial Ethernet Switch | Ports: RJ45 x20, fiber optic interface×4, 10/100/1000M auto-detect, full/half duplex MDI/MDI-X adaptive Support IEEE 802.1×Support HTTP Support RADIUS | |
3 | Timing Module | HZ-EVM-RK3568 | CPU: ROCKCHIP RK3568 Quad-Core 64-bit Cortex-A55 Main Frequency: 2 GHz Memory: 4 GB GPU: ARM G52 2EE 2-way 1000 Mbps Ethernet, RJ45 port, etc. | |
4 | Visible Light Camera | Hikvision MV-CS200-10GC | Sensor Type: CMOS, Rolling Shutter Resolution: 5472 × 3648 Maximum frame rate: 5.9 fps @5472 × 3648 Pixel format: Mono 8/10/12 Bayer GB 8/10/10Packed/12/12Packed YUV422Packed, YUV422_YUYV_Packed RGB 8, BGR 8 | |
5 | Infrared Thermal Sensor | Guide IPT430M | Wavelength range: 8 microns to 14 microns Resolution: 384 × 288 Thermal sensitivity: ≤50 mK Field of view: 46.0° × 34.1° Data interface: Ethernet interface Temperature range: −20~150 °C Temperature measurement accuracy: ±2 °C or ±2% | |
5 | Lidar | LIVOX Mid-360 | Laser wavelength: 905 nm FOV: 360° × 59 Distance random error (1σ): ≤2 cm (@10 m); ≤3 cm (@0.2 m) Angular random error (1σ): <0.15° Point cloud output: 200,000 points/second Point cloud frame rate: 10 Hz (typical) Data Port: 100 BASE-TX Ethernet | |
6 | Ethernet Card | Guangruntong Gigabit Dual Port RJ45 Network Card F902T-V4.0 | Ports: 2 ports Connector: RJ45 Speed: 5 GT/S Slot Width: ×4Lane |
Clock Under Test | Time Reference Clock | Clock Synchronization Time Error Root Mean Square (ns) |
---|---|---|
PTP clock of timing board 2 | PTP clock of timing board 1 | 8.25 |
PTP clock of timing board 3 | PTP clock of timing board 1 | 8.73 |
System clock of timing board 2 | PTP clock of timing board 2 | 128.87 |
System clock of timing board 3 | PTP clock of timing board 3 | 120.18 |
System clock of timing board 1 | PTP clock of timing board 1 | 129.17 |
System clock of timing board 2 | PTP clock of timing board 1 | 128.87 |
System clock of timing board 3 | PTP clock of timing board 1 | 120.47 |
Data Type | Maximum Pixel Error (%) | Pixel Mean Absolute Error (%) | Pixel Mean Square Deviation | SSIM | DSSIM |
---|---|---|---|---|---|
Visible light image | 3.52 | 2.8926 | 11.2633 | 0.8266 | 0.9688 |
Thermal infrared images | 3.36 | 3.2549 | 23.5559 | 0.8887 | 0.9555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, R.; Liu, H.; Hu, Y.; Zhang, M.; Sheng, W. Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco. Appl. Sci. 2025, 15, 8612. https://doi.org/10.3390/app15158612
Song R, Liu H, Hu Y, Zhang M, Sheng W. Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco. Applied Sciences. 2025; 15(15):8612. https://doi.org/10.3390/app15158612
Chicago/Turabian StyleSong, Runze, Haoyu Liu, Yueyang Hu, Man Zhang, and Wenyi Sheng. 2025. "Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco" Applied Sciences 15, no. 15: 8612. https://doi.org/10.3390/app15158612
APA StyleSong, R., Liu, H., Hu, Y., Zhang, M., & Sheng, W. (2025). Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco. Applied Sciences, 15(15), 8612. https://doi.org/10.3390/app15158612