Solid Core Magnetic Gear Systems: A Comprehensive Review of Topologies, Core Materials, and Emerging Applications
Abstract
Featured Application
Abstract
1. Introduction
2. Literature Review and Methodology
3. Topological Diversity and Structural Design in Magnetic Gear Systems
3.1. Conventional Non-Modulated Magnetic Gear
3.2. Modulated Magnetic Gear
3.3. Operating Principles and Theoretical Fundamentals of Magnetic Gear
3.4. Design Parameters of Magnetic Gears
4. Comparative Evaluation of Magnetic Gear Core Materials
4.1. Evaluation Criteria and Normalization Method
4.2. Technical Specifications and Numerical Comparisons
4.2.1. Material Properties
4.2.2. Manufacturability Assessment of Core Materials
- Machining
- Wire EDM
- Investment (Precision) Casting
- Powder Metallurgy
5. Application Areas
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MG | Magnetic Gear |
PM | Permanent Magnet |
SMC | Soft Magnetic Composite |
CMG | Coaxial Magnetic Gear |
IPM | Interior Permanent Magnet |
NdFeB | Neodymium–Iron–Boron |
FEM | Finite-Element Method |
BHmax | Maximum Energy Product |
HTS | High Temperature Superconducting |
TSCMG | Triple-Speed Coaxial Magnetic Gear |
CMGT | Coaxial Magnetic Gear Transmission |
EV | Electric Vehicle |
DTC | Direct Torque Control |
VTD | Volumetric Torque Density |
References
- Tlali, P.M.; Wang, R.-J.; Gerber, S. Magnetic gear technologies: A review. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014. [Google Scholar] [CrossRef]
- Scheidler, J.J. NASA’s Magnetic gearing research for electrified aircraft propulsion. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, OH, USA, 12–14 July 2018. [Google Scholar] [CrossRef]
- Kyoung, B.; Kyung, S.; Min, K. Measurement and torque calculation of magnetic spur gear based on quasi 3D analytical method. IEEE Trans. Appl. Supercond. 2018, 28, 0600305. [Google Scholar] [CrossRef]
- Atallah, K.; Howe, D. A novel high-performance magnetic gear. IEEE Trans. Magn. 2011, 37, 2844–2846. [Google Scholar] [CrossRef]
- Wang, R.; Matthee, A.; Gerber, S.; Pushman, T. Calculation of torque performance of a novel magnetic planetary gear. IEEE Magn. Lett. 2016, 7, 3. [Google Scholar] [CrossRef]
- Chang, W.; Wan, T.; Yueh, C. Torque ripple suppression in an external meshed magnetic gear. Adv. Mech. Eng. 2013, 5, 178909. [Google Scholar] [CrossRef]
- Praslicka, B.; Gardner, M.C.; Johnson, M.; Toliyat, H.A. Review and analysis of coaxial magnetic gear pole pair count selection effects. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 1813–1822. [Google Scholar] [CrossRef]
- Asnani, V.; Scheidler, J.; Tallerico, T. Magnetic gearing research at NASA. In Proceedings of the AHS International 74th Annual Forum, Phoenix, AZ, USA, 14–17 May 2018; pp. 1–14. [Google Scholar]
- Tallerico, T.F.; Cameron, Z.A.; Scheidler, J.J.; Hasseeb, H. Outer stator magnetically-geared motors for electrified urban air mobility vehicles. In Proceedings of the AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), New Orleans, LA, USA, 26–28 August 2020; pp. 1–25. [Google Scholar]
- Kjaer, A.B.; Korsgaard, S.; Nielsen, S.S.; Demsa, L.; Rasmussen, P.O. Design, fabrication, test, and benchmark of a magnetically geared permanent magnet generator for wind power generation. IEEE Trans. Energy Convers. 2019, 35, 24–32. [Google Scholar] [CrossRef]
- Klimina, L.; Dosaev, M.; Selyutskiy, Y. Asymptotic analysis of the mathematical model of a wind-powered vehicle. Appl. Math. Modell. 2017, 46, 691–697. [Google Scholar] [CrossRef]
- Johnson, M.; Gardner, M.C.; Toliyat, H.A.; Englebretson, S.; Ouyang, W.; Tschida, C. Design, construction, and analysis of a large-scale inner stator radial flux magnetically geared generator for wave energy conversion. IEEE Trans. Ind. Appl. 2018, 54, 3305–3314. [Google Scholar] [CrossRef]
- Frandsen, T.V.; Rasmussen, P.O.; Jensen, K.K. Improved motor integrated permanent magnet gear for traction applications. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, CA, USA, 15–20 September 2012; pp. 3332–3339. [Google Scholar]
- Esnoz-Larraya, J.; Valiente-Blanco, I.; Cristache, C.; Sanchez-Garcia-Casarrubios, J.; Rodriguez-Celis, F.; Diez-Jimenez, E.; Perez-Diaz, J.L. OPTIMAGDRIVE: High-performance magnetic gears development for space applications. In Proceedings of the European Space Mechanisms and Tribology Symposium (ESMATS), Hatfield, UK, 20–22 September 2017. [Google Scholar]
- Frandsen, T.V.; Rasmussen, P.O. Slip torque investigation and magnetic redesign of motor integrated permanent magnet gear. In Proceedings of the 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 24–26 August 2015; pp. 929–935. [Google Scholar]
- Montague, R.G.; Bingham, C.; Atallah, K. Magnetic gear pole-slip prevention using explicit model predictive control. IEEE/ASME Trans. Mechatron. 2012, 18, 1535–1543. [Google Scholar] [CrossRef]
- Fodorean, D. State of the art of magnetic gears, their design and characteristics with respect to EV application. In Modelling and Simulation for Electric Vehicle Applications; IntechOpen: Londom, UK, 2016; pp. 73–95. [Google Scholar] [CrossRef]
- Ikuta, K.; Makita, S.; Arimoto, S. Non-contact magnetic gear for micro transmission mechanism. In Proceedings of the IEEE Micro Electro Mechanical Systems, Nara, Japan, 30 January–2 February 1991; pp. 125–130. [Google Scholar]
- Din, G. A Performance test Design Method and Its Implementation Pattern for Multi-Services Systems. Ph.D. Thesis, Technical University of Berlin, Department of Electrical Engineering, Berlin, Germany, 2009. [Google Scholar]
- Homin, S.; Chang, C. Comparison of radial force at modulating pieces in coaxial magnetic gear and magnetic geared machine. IEEE Trans. Magn. 2018, 54, 8101904. [Google Scholar] [CrossRef]
- Tapia, M.; Jara, R.; Wallace, A. Parameters identification of an axial flux induction machine using field equations. In Proceedings of the XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018. [Google Scholar]
- Yao, Y.D.; Huang, D.R.; Hsieh, C.C.; Chiang, D.Y.; Wang, S.J.; Ying, T.F. The radial magnetic coupling studies of perpendicular magnetic gears. IEEE Trans. Magn. 1996, 32, 5061–5063. [Google Scholar] [CrossRef]
- Wang, J.; Atallah, K.; Wang, W. Analysis of a magnetic screw for high force density linear electromagnetic actuators. IEEE Trans. Magn. 2011, 47, 4477–4480. [Google Scholar] [CrossRef]
- Huang, C.C.; Tsai, M.C.; Dorrell, D.G.; Lin, B.J. Development of a magnetic planetary gearbox. IEEE Trans. Magn. 2008, 44, 403–412. [Google Scholar] [CrossRef]
- Jorgensen, F.T.; Andersen, T.O.; Rasmussen, P.O. The cycloid permanent magnetic gear. IEEE Trans. Ind. Appl. 2008, 44, 1659–1665. [Google Scholar] [CrossRef]
- Baninajar, H.; Modaresahmadi, S.; Wong, H.Y.; Bird, J.Z.; Williams, W.; DeChant, B.; Southwick, P. A Dual-stack coaxial magnetic gear for wave energy conversion generator. IEEE Trans. Magn. 2022, 58, 8003012. [Google Scholar] [CrossRef]
- Rens, J.; Atallah, K.; Calverley, S.D.; Howe, D. A novel magnetic harmonic gear. IEEE Trans. Ind. Appl. 2010, 46, 206–212. [Google Scholar] [CrossRef]
- Jing, L.; Wang, Y.; Li, D.; Qu, R. Characteristic analysis of a new structure eccentric harmonic magnetic gear. Actuators 2023, 12, 248. [Google Scholar] [CrossRef]
- Pakdelian, S.; Frank, N.W.; Toliyat, H.A. Analysis and design of the trans-rotary magnetic gear. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, CA, USA, 15–20 September 2012; pp. 3340–3347. [Google Scholar]
- Atallah, K.; Calverley, S.D.; Howe, D. Design, analysis and realisation of a high-performance magnetic gear. IEE Proc.–Electr. Power Appl. 2004, 151, 135–143. [Google Scholar] [CrossRef]
- Rasmussen, P.O.; Andersen, T.O.; Jorgensen, F.T.; Nielsen, O. Development of a high-performance magnetic gear. IEEE Trans. Ind. Appl. 2005, 41, 764–770. [Google Scholar] [CrossRef]
- Uppalapati, K.; Bird, J. A flux focusing ferrite magnetic gear. In Proceedings of the 6th IET International Conference on Power Electronics, Machines and Drives, Bristol, UK, 27–29 March 2012; pp. 1–6. [Google Scholar]
- Frank, N.W.; Toliyat, H.A. Analysis of the concentric planetary magnetic gear with strengthened stator and interior permanent magnet inner rotor. IEEE Trans. Ind. Appl. 2011, 47, 1652–1660. [Google Scholar] [CrossRef]
- Aiso, K.; Akatsu, K. A novel reluctance magnetic gear for high speed motor. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar]
- Aiso, K.; Akatsu, K.; Aoyama, Y. Reluctance magnetic gear and flux switching magnetic gear for high speed motor system. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 2445–2452. [Google Scholar] [CrossRef]
- Tsai, M.; Ku, L. 3-D printing-based design of axial flux magnetic gear for high torque density. IEEE Trans. Magn. 2015, 51, 8002704. [Google Scholar] [CrossRef]
- Yin, X.; Pfister, P.; Fang, Y. A novel magnetic gear: Toward a higher torque density. IEEE Trans. Magn. 2015, 51, 8002804. [Google Scholar] [CrossRef]
- Peng, S.; Fu, W.N.; Ho, S.L. A novel triple-permanent-magnet-excited hybrid-flux magnetic gear and its design method using 3-D finite element method. IEEE Trans. Magn. 2014, 50, 8104904. [Google Scholar] [CrossRef]
- Li, W.; Chau, K.T.; Li, J. Simulation of a tubular linear magnetic gear using HTS bulks for field modulation. IEEE Trans. Appl. Supercond. 2011, 21, 1167–1170. [Google Scholar] [CrossRef]
- Kikuchi, S.; Tsurumoto, K. Design and characteristics of a new magnetic worm gear using permanent magnet. IEEE Trans. Magn. 1993, 29, 2923–2925. [Google Scholar] [CrossRef]
- Campbell, P. Permanent Magnet Materials and Their Applications; Cambridge University Press: Cambridge, UK, 1994; p. 207. [Google Scholar]
- Tzouganakis, P.; Gakos, V.; Kalligeros, C.; Tsolakis, A.; Spitas, V. Fast and efficient simulation of the dynamical response of coaxial magnetic gears through direct analytical torque modelling. Simul. Model. Pract. Theory 2023, 123, 102699. [Google Scholar] [CrossRef]
- Marinova, I.; Mateev, V. Modeling of dynamic torque control of a coaxial magnetic gear. In Proceedings of the 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), Paris, France, 15–19 July 2019; pp. 1–4. [Google Scholar]
- Deng, Z.; Nas, I.; Dapino, M.J. Torque analysis in coaxial magnetic gears considering nonlinear magnetic properties and spatial harmonics. IEEE Trans. Magn. 2019, 55, 8200511. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, X. Natural frequencies and vibrating modes for a magnetic planetary gear drive. Shock Vib. 2012, 19, 1385–1401. [Google Scholar] [CrossRef]
- Uppalapati, K.K.; Bird, J.Z.; Wright, J.; Pritchard, J.; Calvin, M.; Williams, W. A magnetic gearbox with an active region torque density of 239 Nm/L. IEEE Trans. Ind. Appl. 2017, 54, 1331–1338. [Google Scholar] [CrossRef]
- Wong, H.Y.; Baninajar, H.; Dechant, B.; Bird, J. Designing a magnetic gear for an electric aircraft drivetrain. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Som, D.; Li, K.; Kadel, J.; Wright, J.; Modaresahmadi, S.; Bird, J.Z.; William, W. Analysis and testing of a coaxial magnetic gearbox with flux concentration Halbach rotors. IEEE Trans. Magn. 2017, 53, 8112206. [Google Scholar] [CrossRef]
- Tlali, P.M.; Gerber, S.; Wang, R.J. Optimal design of an outer-stator magnetically geared permanent magnet machine. IEEE Trans. Magn. 2016, 52, 8100610. [Google Scholar] [CrossRef]
- Mateev, V.; Todorova, M.; Marinova, I. Design aspects of conical coaxial magnetic gears. Energies 2023, 16, 4191. [Google Scholar] [CrossRef]
- Gou, X.F.; Yang, Y.; Zheng, X.J. Analytic expression of magnetic field distribution of rectangular permanent magnets. Appl. Math. Modell. 2004, 25, 271–278. [Google Scholar] [CrossRef]
- Wang, P.; Yang, J.; Ge, Y. Design and optimization of Halbach magnetic gear. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2024, 40, 49. [Google Scholar] [CrossRef]
- Tzouganakis, P.; Gakos, V.; Kalligeros, C.; Papalexis, C.; Tsolakis, A.; Spitas, V. Torque calculation and dynamical response in Halbach array coaxial magnetic gears through a novel analytical 2D model. Computation 2024, 12, 88. [Google Scholar] [CrossRef]
- Jian, L.; Chau, K.T. A coaxial magnetic gear with Halbach permanent-magnet arrays. IEEE Trans. Energy Convers. 2010, 25, 319–328. [Google Scholar] [CrossRef]
- Rahideh, A.; Vahaj, A.A.; Mardaneh, M.; Gharehpetian, G. Two-dimensional analytical investigation of the parameters and the effects of magnetisation patterns on the performance of coaxial magnetic gears. IET Electr. Syst. Transp. 2017, 7, 190–197. [Google Scholar] [CrossRef]
- Jing, L.; Liu, W.; Tang, W.; Rao, Y.; Tan, C.; Ben, T. Calculation of torque and loss of coaxial magnetic gear with Halbach array in 3D model. J. Electr. Eng. Technol. 2022, 17, 2875–2885. [Google Scholar] [CrossRef]
- Johnson, M.; Gardner, M.C.; Toliyat, H.A. Design comparison of NdFeB and ferrite radial flux surface permanent magnet coaxial magnetic gears. IEEE Trans. Ind. Appl. 2018, 54, 1254–1263. [Google Scholar] [CrossRef]
- Basak, A. Permanent Magnet DC Linear Motors; Clarendon Press: Oxford, UK, 1996. [Google Scholar]
- Chen, M.G.; Chau, K.T.; Li, W.; Liu, C. Cost-effectiveness comparison of coaxial magnetic gears with different magnet materials. IEEE Trans. Magn. 2014, 50, 821–824. [Google Scholar] [CrossRef]
- Tan, C.; Liu, W.; Rao, Y.; Tang, W.; Jing, L. Loss analysis of magnetic gear with slotted in magnetic modulation ring. CES Trans. Electr. Mach. Syst. 2023, 7, 110–117. [Google Scholar] [CrossRef]
- Mateev, V.; Ivanov, G.; Marinova, I. Modeling of fluid flow cooling of high-speed rotational electrical devices. In Proceedings of the XVI-th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, 6–8 June 2019; pp. 308–312. [Google Scholar]
- Mai, Q.; Hu, Q.; Chen, X. Electromagnetic–structural coupling analysis and optimization of bridge-connected modulators in coaxial magnetic gears. Energies 2025, 18, 2069. [Google Scholar] [CrossRef]
- Desvaux, M.; Bildstein, H.; Multon, B.; Ben Ahmed, H.; Sire, S.; Fasquelle, A.; Laloy, T. Magnetic losses and thermal analysis in a magnetic gear for wind turbine. In Proceedings of the 2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, G.; Zhao, W.; Ji, J. Design and analysis of coaxial magnetic gears considering rotor losses. IEEE Trans. Magn. 2015, 51, 8108304. [Google Scholar] [CrossRef]
- Barrière, O.; Hlioui, S.; Ben Ahmed, H.; Gabsi, M. An analytical model for the computation of no-load eddy current losses in the rotor of a permanent magnet synchronous machine. IEEE Trans. Magn. 2016, 52, 8103813. [Google Scholar]
- Hernandez-Aramburo, C.A.; Green, T.C.; Smith, A.C. Estimating rotational iron losses in an induction machine. IEEE Trans. Magn. 2003, 39, 3527–3533. [Google Scholar] [CrossRef]
- Nikolarea, N.; Tzouganakis, P.; Gakos, V.; Papalexis, C.; Tsolakis, A.; Spitas, V. Detailed investigation of the eddy current and core losses in coaxial magnetic gears through a two-dimensional analytical model. Math. Comput. Appl. 2024, 29, 38. [Google Scholar] [CrossRef]
- Kim, C.W.; Kim, J.M.; Seo, S.W.; Ahn, J.H.; Hong, K.Y.; Choi, J.Y. Core loss analysis of permanent magnet linear synchronous generator considering the 3-D flux path. IEEE Trans. Magn. 2018, 54, 8200604. [Google Scholar] [CrossRef]
- Kowol, M.; Kołodziej, J.; Jagieła, M.; Łukaniszyn, M. Impact of modulator designs and materials on efficiency and losses in radial passive magnetic gear. IEEE Trans. Energy Convers. 2019, 34, 147–154. [Google Scholar] [CrossRef]
- Ab Halim, M.F.M.; Sulaiman, E.; Jenal, M.; Othman, R.N.F.K.R.; Othman, S.M.N.S. Preliminary analysis of eddy current and iron loss in magnetic gear in electric vehicle. Int. J. Electr. Comput. Eng. 2022, 12, 1161. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, K.; Zhang, C.; Li, L. Analytical prediction of the flux reversal permanent magnet machine with Halbach array magnets in rotor slot considering saturation. IET Renew. Power Gener. 2022, 16, 1562–1576. [Google Scholar] [CrossRef]
- Ouamara, D.; Dubas, F. Permanent-magnet eddy-current losses: A global revision of calculation and analysis. Math. Comput. Appl. 2019, 24, 67. [Google Scholar] [CrossRef]
- Elgamli, E.; Anayi, F. Advancements in electrical steels: A comprehensive review of microstructure, loss analysis, magnetic properties, alloying elements, and the influence of coatings. Appl. Sci. 2023, 13, 10283. [Google Scholar] [CrossRef]
- Toda, H.; Xia, Z.; Wang, J.; Atallah, K.; Howe, D. Rotor eddy-current loss in permanent magnet brushless machines. IEEE Trans. Magn. 2004, 40, 2104–2106. [Google Scholar] [CrossRef]
- Ede, J.D.; Atallah, K.; Jewell, G.W.; Wang, J.B.; Howe, D. Effect of axial segmentation of permanent magnets on rotor loss in modular permanent-magnet brushless machines. IEEE Trans. Ind. Appl. 2007, 43, 1207–1213. [Google Scholar] [CrossRef]
- Mirzaei, M.; Binder, A.; Deak, C. 3D analysis of circumferential and axial segmentation effect on magnet eddy-current losses in permanent magnet synchronous machines with concentrated windings. In Proceedings of the XIX International Conference on Electrical Machines, Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar]
- Vannest, J.; Zhang, J. Partially segmented permanent-magnet losses in interior permanent-magnet motors. Energies 2025, 18, 2879. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, W.N.; Ho, S.L.; Liu, H. Quantitative comparative analysis of radial flux, transverse flux, and axial flux magnetic gears. IEEE Trans. Magn. 2014, 50, 8104604. [Google Scholar] [CrossRef]
- Magweb. Available online: https://www.magweb.us/smag/ (accessed on 13 June 2025).
- Paltanea, G.; Manescu, V.; Antoniac, A.; Nemoianu, I.V.; Gavrila, H. Mechanical and Magnetic Properties Variation in Non-Oriented Electrical Steels with Different Cutting Technology: A Review. Materials 2024, 17, 1345. [Google Scholar] [CrossRef]
- Syreyshchikova, N.V.; Guzeev, V.I.; Ardashev, D.V.; Pimenov, D.Y.; Patra, K.; Kapłonek, W.; Nadolny, K. A study on the machinability of steels and alloys to develop recommendations for setting tool performance characteristics and belt grinding modes. Materials 2020, 13, 3978. [Google Scholar] [CrossRef]
- Zaman, H.A.; Sharif, S.; Kim, D.W.; Idris, M.H.; Suhaimi, M.A.; Tumurkhuyag, Z. Machinability of Cobalt-based and Cobalt Chromium Molybdenum Alloys—A Review. Procedia Manuf. 2017, 11, 563–570. [Google Scholar] [CrossRef]
- Karabulut, Y.; Meşe, E.; Ayaz, M.; Aktaş, S. Comparison study on SMC and grain-oriented laminated steel core for small-size axial flux permanent-magnet synchronous machines. Mater. Res. Express 2024, 11, 106102. [Google Scholar] [CrossRef]
- Sarala Rubi, C.; Prakash, J.U.; Juliyana, S.J.; Čep, R.; Salunkhe, S.; Kouril, K.; Ramdas Gawade, S. Comprehensive review on wire electrical discharge machining: A non-traditional material removal process. Front. Mech. Eng. 2024, 10, 1322605. [Google Scholar] [CrossRef]
- Ferraris, L.; Pošković, E.; Franchini, F. New Soft Magnetic Composites for electromagnetic applications with improved mechanical properties. AIP Adv. 2016, 6, 056209. [Google Scholar] [CrossRef]
- Hawelek, L.; Zackiewicz, P.; Kadziolka-Gawel, M.; Wojcik, A.; Maziarz, W.; Chulist, R.; Fábián, M.; Warski, T. Structure and magnetic properties of vacuum- and air-annealed rapidly quenched Mo- and Co-modified Fe85.3Cu0.7B14 alloy. Arch. Civ. Mech. Eng. 2025, 25, 188. [Google Scholar] [CrossRef]
- Müller, M.; Czempas, D.; Bailly, D.; Hirt, G. Twin Roll Casting and Secondary Cooling of 6.0 wt.% Silicon Steel. Metals 2021, 11, 1508. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Dougan, M.J. Powder metallurgical materials and processes for soft magnetic applications. In Proceedings of the Workshop SRM Drives an Alternative for E-Traction, Vilanova i La Geltrú (Barcelona), Spain, 2 February 2018; pp. 11–18. [Google Scholar]
- Filippini, M.; Alotto, P.; Cirimele, V.; Repetto, M.; Ragusa, C.; Dimauro, L.; Bonisoli, E. Magnetic loss analysis in coaxial magnetic gears. Electronics 2019, 8, 1320. [Google Scholar] [CrossRef]
- Seo, S.W.; Jang, G.H.; Kim, C.W.; Yoon, I.J.; Choi, J.Y. Electromagnetic analysis of linear magnetic gears based on the characteristics of their flux-modulation poles. IEEE Trans. Appl. Supercond. 2020, 30, 5200605. [Google Scholar] [CrossRef]
- Cha, H.R.; Lee, K.S.K.; Yun, C.H.; Lee, S.H. Magnetic properties of soft magnetic composite using external flux impression method. J. Optoelectron. Adv. Mater. 2008, 10, 1787–1791. [Google Scholar]
- Shen, J.-X.; Li, H.-Y.; Hao, H.; Jin, M.-J. A coaxial magnetic gear with consequent-pole rotors. IEEE Trans. Energy Convers. 2017, 32, 267–275. [Google Scholar] [CrossRef]
- Dindar, T.; Yilmaz, K. Reduction of core size and power losses of a soft composite magnetic gear. Simul. Modell. Pract. Theory 2025, 142, 103135. [Google Scholar] [CrossRef]
- Cros, J.; Viarouge, P.; Halila, A. Brush DC motors with concentrated windings and soft magnetic composites armatures. In Proceedings of the IEEE International Applications Conference, Chicago, IL, USA, 22 October 2001; pp. 2549–2556. [Google Scholar]
- Guo, Y.; Zhu, J.; Zhong, J.; Wu, W. Comparative study of 3D flux electrical machines with soft magnetic composite cores. In Proceedings of the IEEE Industry Applications Conference, Pittsburgh, PA, USA, 13–18 October 2002; pp. 1147–1154. [Google Scholar]
- Zhu, J.; Guo, Y. Study with magnetic property measurement of soft magnetic composite material and its application in electrical machines. In Proceedings of the IEEE Industry Applications Conference, Seattle, WA, USA, 3–7 October 2004. [Google Scholar]
- Maeda, T.; Toyoda, H.; Igarashi, N.; Hirose, K.; Mimura, K.; Nishioka, T.; Ikegaya, A. Development of super low iron-loss P/M soft magnetic material. SEI Tech. Rev. 2005, 60, 3–9. [Google Scholar]
- Hultman, L.O.; Jack, A.G. Soft magnetic composites—Materials and applications. In Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC’03), Madison, WI, USA, 1–4 June 2003; pp. 516–522. [Google Scholar]
- Ruiz-Ponce, G.; Arjona, M.A.; Hernandez, C.; Escarela-Perez, R. A review of magnetic gear technologies used in mechanical power transmission. Energies 2023, 16, 1721. [Google Scholar] [CrossRef]
- Atallah, K.; Wang, J.; Howe, D. A high-performance linear magnetic gear. J. Appl. Phys. 2005, 97, 10N516. [Google Scholar] [CrossRef]
- Mezani, S.; Atallah, K.; Howe, D. A high-performance axial-field magnetic gear. J. Appl. Phys. 2006, 99, 08R303. [Google Scholar] [CrossRef]
- Bomela, W.; Bird, J.Z.; Acharya, V.M. The performance of a transverse flux magnetic gear. IEEE Trans. Magn. 2014, 50, 4000104. [Google Scholar] [CrossRef]
- Gerber, S.; Wang, R.-J. Evaluation of a prototype magnetic gear. In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; pp. 319–334. [Google Scholar] [CrossRef]
- Jing, L.; Gong, J.; Huang, Z.; Ben, T.; Huang, Y. A novel structure for magnetic gear. IEEE Access 2019, 7, 75550–75555. [Google Scholar] [CrossRef]
- Wong, H.D.; Bird, J.Z. Performance potential of high gear ratio coaxial magnetic gears. In Proceedings of the 2021 IEEE International Magnetics Conference (INTERMAG), Lyon, France, 26–30 April 2021; pp. 1–5. [Google Scholar]
- Afsari, S.A. Optimal design and analysis of a novel reluctance axial flux magnetic gear. Sci. Iran. 2022, 29, 1573–1580. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Wang, Q.; Yan, B.; Huang, Z.; Wang, K. Performance investigation and experimental testing of a stator-PM-excitation axial-flux magnetic gear. IEEE Trans. Transp. Electrif. 2023, 9, 2593–2605. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q. Investigation of the torque transmission characteristics in dual-flux-modulated magnetic gear. IEEE Trans. Magn. 2020, 56, 8000808. [Google Scholar] [CrossRef]
- Yılmaz, K.; Dindar, T.; Ayaz, M.; Aktaş, S. Finite element analysis of SMC core magnetic gear for vehicle powertrain systems. Balkan J. Electr. Comput. Eng. 2023, 11, 322–328. [Google Scholar] [CrossRef]
- Moghimi, A.; Aliabadi, M.H.; Farahani, H.F. Triple-speed coaxial magnetic gear for wind turbine applications: Introduction and comprehensive analysis. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2022, 41, 1223–1244. [Google Scholar] [CrossRef]
- Ribrant, J.; Bertling, L.M. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. IEEE Trans. Energy Convers. 2007, 22, 167–173. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Ou, F.-M.; Tsai, M.-C.; Fajri, S.N. Development of a dual-input magnetic gear train for the transmission system of small-scale wind turbines. Appl. Sci. 2022, 12, 3685. [Google Scholar] [CrossRef]
- Dai, B.; Nakamura, K.; Suzuki, Y.; Tachiya, Y.; Kuritani, K. Cogging torque reduction of integer gear ratio axial-flux magnetic gear for wind-power generation application by using two new types of pole pieces. IEEE Trans. Magn. 2022, 58, 8002205. [Google Scholar] [CrossRef]
- Chau, K.T.; Zhang, D.; Jiang, J.Z.; Liu, C.; Zhang, Y. Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles. IEEE Trans. Magn. 2007, 43, 2504–2506. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, C.; Song, Z.; Liu, S. A consequent-pole PM magnetic-geared double-rotor machine with flux-weakening ability for hybrid electric vehicle application. IEEE Trans. Magn. 2019, 55, 8202507. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, J.; Deng, Z.; Jian, L. A novel electric vehicle powertrain system supporting multi-path power flows: Its architecture, parameter determination and system simulation. Energies 2017, 10, 216. [Google Scholar] [CrossRef]
- McGilton, B.; Mueller, M.; McDonald, A. Review of magnetic gear technologies and their applications in marine energy. In Proceedings of the 5th IET International Conference on Renewable Power Generation (RPG), London, UK, 21–23 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Li, W.; Chau, K.T.; Jiang, J.Z. Application of linear magnetic gears for pseudo-direct-drive ocean wave energy harvesting. IEEE Trans. Magn. 2011, 47, 2624–2627. [Google Scholar] [CrossRef]
- Lee, E.; Song, H.; Jeong, J.; Jeong, S. Mechanical variable magnetic gear transmission: Concept and preliminary study. IEEE Robot. Autom. Lett. 2022, 7, 3357–3364. [Google Scholar] [CrossRef]
- Megahed, T.F.; Gouda, E.A.; Mansour, D.E.A.; El-Hussieny, H.; Hameed, I.A.; Fares, A.; Nassef, M.G. Innovative magnetic gear design incorporating electromagnetic coils for multiple gear ratios. Machines 2024, 12, 690. [Google Scholar] [CrossRef]
- Song, H.; Lee, E.; Seo, H.-T.; Jeong, S. Magnetic gear-based actuator: Design, optimization, and torque control framework with degradation observer. IEEE Robot. Autom. Lett. 2023, 8, 7050–7057. [Google Scholar] [CrossRef]
- Scheidler, J.J.; Asnani, V.M.; Tallerico, T.F. Propulsion Scaling Methods in the Era of Electric Flight. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, 12–14 July 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Praslicka, B.; Johnson, M.; Plugge, E.; Palmer, N.; Knight, D.F.; White, A.; Simms, T.; Zamarron, D.; Toliyat, H.A. A novel low-cost, high-speed cycloidal magnetic gear design and analysis for aerospace servo actuator applications. IEEE/ASME Trans. Mechatron. 2023, 28, 3352–3363. [Google Scholar] [CrossRef]
Type | Advantages | Disadvantages |
---|---|---|
NdFeB | High energy and flux density per unit volume | Low Curie temperature and high cost |
AlNiCo | High Curie temperature and high flux density | Low coercivity, brittleness, and costliness |
SmCo | High coercive force, high flux density, and resistance to heat | High cost and fabrication complexity |
Permanent Magnet | Hc (kA/m) | Br (T) | BHmax (kJ/m3) | Tc (°C) |
---|---|---|---|---|
Alnico | 40–140 | 0.6–1.4 | 10–88 | 700–860 |
Ferrite | 120–300 | 0.2–0.4 | 10–40 | 450 |
NdFeB | 750–2000 | 1.0–1.4 | 200–400 | 310–400 |
SmCo | 600–2000 | 0.8–1.1 | 150–240 | 720 |
Property | Electrical Steel (M400 50A) | Iron Powder (Somaloy 700HR 5P) | Cobalt Steel (Vacodur 50A) |
---|---|---|---|
Saturation Flux Density (T) | 2.10 | 2.00 | 2.35 |
Relative Permeability (µr) | 3000 | 600 | 10,000 |
Core Loss (50 Hz, W/kg) | 5.5 | 18.0 | 7.5 |
Electrical Conductivity (S/m) | 1.96 × 106 | 1.66 × 103 | 2.38 × 107 |
Thermal Conductivity (W/m·K) | 28 | 21 | 32 |
Density (kg/m3) | 7650 | 7500 | 8120 |
Manufacturability (0–100) | 59 | 22 | 36 |
Cost Score (0–100) | 100 | 65 | 30 |
Material | Production Method | Prototype | Mass Production | Average |
---|---|---|---|---|
M400-50A | Machining | 85 | 75 | 59 |
Wire EDM | 80 | 40 | ||
Investment Casting | 30 | 60 | ||
Powder Metallurgy | 40 | 65 | ||
Somaloy 700HR 5P | Machining | 25 | 10 | 22 |
Wire EDM | 10 | 0 | ||
Investment Casting | 0 | 0 | ||
Powder Metallurgy | 40 | 90 | ||
Vacodur 50A | Machining | 50 | 30 | 36 |
Wire EDM | 70 | 25 | ||
Investment Casting | 20 | 55 | ||
Powder Metallurgy | 15 | 25 |
MG Topology | Material Type | GR | VTD | Application Area | Fig.Num. | Ref. |
---|---|---|---|---|---|---|
Linear MG | Steel 1010-M400 NdFeB | 3.25:1 | 1.7 MN/m3 | Electric Vehicles | Figure 3h | [101] |
Axial MG | Silicon Iron NdFeB | 5.75:1 | 70 kN/m3 | Aerospace | Figure 3e,f | [102] |
Spoke Ferrite MG | Steel 1018 NdFeB N40H | 4.25:1 | 84.4 kNm/m3 | Robotic Systems | Figure 3b | [46] |
Cycloidal MG | Steel 1018 NdFeB | 22:1 | 141.9 kNm/m3 | Robotic Systems | Figure 2f | [25] |
Spoke-Type Coaxial MG | Steel 1018 NdFeB | 5.5:1 | 92 kNm/m3 | Renewable Energy | Figure 3b | [31] |
Surface-Mounted Coaxial MG | Steel 1018 NdFeB | 5.5:1 | 98.1 kNm/m3 | Robotic Systems | Figure 3c | [102] |
Transverse Flux MG | Steel 416 Ferrite–NdFeB | 3.75:1 | 80.6 kNm/m3 | Electric Vehicles | Figure 2h | [103] |
Concentric-Type MG | Steel M 19 NdFeB 35 | 10.5:1 | 100 kNm/m3 | Electric Vehicles | Figure 3g | [104] |
Spoke Coaxial MG | Steel M 19 NdFeB | 5.75:1 | 162 kNm/m3 | Electric Vehicles | Figure 3b | [105] |
Cycloidal MG | Steel M 19 NdFeB 42 | 33:1 | 300 kNm/m3 | Robotic Systems | Figure 2f | [106] |
Dual-Stack Coaxial MG | Steel M 19-M27 NdFeB 50 | 7.67:1 | 221 kNm/m3 | Aerospace | Figure 3e | [26] |
Axial Flux MG | M400 50A NdFeB 35 | 5:1 | 11.07 kNm/m3 | Electric Vehicles | Figure 3e | [107] |
Axial-Flux MG | Steel 20 NdFeB 35UH | 2.11:1 | 14.7 kNm/m3 | Electric Vehicles | Figure 3f | [108] |
Dual-Flux-Modulator MG | Steel B65A800 NdFeB | 5.5:1 | 55.2 kNm/m3 | Robotic Systems | Figure 3g | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezen, S.; Yilmaz, K.; Aktas, S.; Ayaz, M.; Dindar, T. Solid Core Magnetic Gear Systems: A Comprehensive Review of Topologies, Core Materials, and Emerging Applications. Appl. Sci. 2025, 15, 8560. https://doi.org/10.3390/app15158560
Sezen S, Yilmaz K, Aktas S, Ayaz M, Dindar T. Solid Core Magnetic Gear Systems: A Comprehensive Review of Topologies, Core Materials, and Emerging Applications. Applied Sciences. 2025; 15(15):8560. https://doi.org/10.3390/app15158560
Chicago/Turabian StyleSezen, Serkan, Kadir Yilmaz, Serkan Aktas, Murat Ayaz, and Taner Dindar. 2025. "Solid Core Magnetic Gear Systems: A Comprehensive Review of Topologies, Core Materials, and Emerging Applications" Applied Sciences 15, no. 15: 8560. https://doi.org/10.3390/app15158560
APA StyleSezen, S., Yilmaz, K., Aktas, S., Ayaz, M., & Dindar, T. (2025). Solid Core Magnetic Gear Systems: A Comprehensive Review of Topologies, Core Materials, and Emerging Applications. Applied Sciences, 15(15), 8560. https://doi.org/10.3390/app15158560