A Comparative Study of Storage Batteries for Electrical Energy Produced by Photovoltaic Panels
Abstract
1. Introduction
Literature Review
2. Materials and Methods
2.1. Model in MATLAB–Simulink for Controlling Electric Energy Storage in Batteries
2.1.1. Description of Model Developed in MATLAB-Simulink Programming Environment
2.1.2. Functioning of Model Developed in MATLAB-Simulink
3. Simulation Results
Comparative Analysis of Simulation Results
4. Building the Experimental Stand
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kar, M.K.; Kanungo, S.; Dash, S.; Parida, R.R. Grid connected solar panel with battery energy storage system. Int. J. Appl. Power Eng. (IJAPE) 2024, 13, 223–233. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Gorji, S.A.; Sera, D. A Quadratic Buck-Boost Converter With Continuous Input and Output Currents. Appl. Res. 2023, 11, 22376–22393. [Google Scholar] [CrossRef]
- Villanueva-Loredo, J.A.; Martinez-Rodriguez, P.R.; Rodriguez-Cortés, C.J.; Langarica-Cordoba, D.; Hernández-Gómez, Á.; Guilbert, D. Analysis and Control Design of a Step-Up/Step-Down Converter for Battery-Discharge Voltage Regulation. Electronics 2025, 14, 877. [Google Scholar] [CrossRef]
- Felez, R.; Felez, J. Advanced Energy Management for Residential Buildings Optimizing Costs and Efficiency Through Thermal Energy Storage and Predictive Control. Appl. Sci. 2025, 15, 880. [Google Scholar] [CrossRef]
- Rogalev, N.; Rogalev, A.; Kindra, V.; Naumov, V.; Maksimov, I. Comparative Analysis of Energy Storage Methods for Energy Systems and Complexes. Energies 2022, 15, 9541. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, R.; Singh, D.P.; Awasthi, S.K. Comparative Study of Efficiency of Solar, Ambient Noise and Wind Energy for Hybrid Car. Int. J. Appl. Eng. Res. 2018, 13, 9509–9512. Available online: http://www.ripublication.com (accessed on 17 July 2025).
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Stornelli, V. Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability 2018, 10, 3117. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative review of electrical energy storage systems for better sustainability. J. Power Technol. 2017, 97, 220–245. [Google Scholar]
- Tsai, P.-C.; Jhan, J.-Z.; Tang, S.S.-S.; Kuo, C.-C. Estimation of Energy Storage Requirements in an Independent Power System from an Energy Perspective. Appl. Sci. 2024, 14, 814. [Google Scholar] [CrossRef]
- Chen, X.; Si, Y.; Liu, C.; Chen, L.; Xue, X.; Guo, Y.; Mei, S. The Value and Optimal Sizes of Energy Storage Units in Solar-Assist Cogeneration Energy Hubs. Appl. Sci. 2020, 10, 4994. [Google Scholar] [CrossRef]
- Uswarman, R.; Munawar, K.; Ramli, M.A.M.; Mehedi, I.M. Bus Voltage Stabilization of a Sustainable Photovoltaic-Fed DC Microgrid with Hybrid Energy Storage Systems. Sustainability 2024, 16, 2307. [Google Scholar] [CrossRef]
- Wu, X.; Tang, Z.; Stroe, D.-I.; Kerekes, T. Overview and Comparative Study of Energy Management Strategies for Residential PV Systems with Battery Storage. Batteries 2022, 8, 279. [Google Scholar] [CrossRef]
- Gonzalez-Saenz, J.; Becerra, V. Optimal Battery Energy Storage Dispatch for the Day-Ahead Electricity Market. Batteries 2024, 10, 228. [Google Scholar] [CrossRef]
- Yu, X.; Fan, J.; Wu, Z.; Hong, H.; Xie, H.; Dong, L.; Li, Y. Simulation and Optimization of a Hybrid Photovoltaic/Li-Ion Battery System. Batteries 2024, 10, 393. [Google Scholar] [CrossRef]
- Saady, I.; Majout, B.; El Kafazi, I.; Karim, M.; Bossoufi, B.; El Ouanjli, N.; Mahfoud, S.; Althobaiti, A.; Alghamdi, T.A.; Alenezi, M. Improving photovoltaic water pumping system performance with ANN-based direct torque control using real-time simulation. Sci. Rep. 2025, 15, 4024. [Google Scholar] [CrossRef]
- Shameem, P.; Suresh, L. Simulation studies on developed Solar PV Array based Multipurpose EV Charger by using SMC Control and ANFIS. Int. Res. J. Eng. Technol. (IRJET) 2022, 9, 1052–1064. [Google Scholar]
- Haritha, M.; Tony, T.; Induja, S. A Solar PV Array Based Multipurpose EV Charger. Int. J. Adv. Eng. Res. Sci. (IJAERS) 2021, 8, 89–94. [Google Scholar] [CrossRef]
- Anusha, S.; Nagabhushanam, K. Designing of multifunctional EV charger based on solar PV array. J. Vis. Perform. Arts 2024, 5, 677–689. [Google Scholar] [CrossRef]
- Sinuraya, A.; Sinaga, D.H.; Simamora, Y.; Wahyudi, R. Solar photovoltaic application for electric vehicle battery charging. J. Phys. Conf. Ser. 2022, 2193, 012075. [Google Scholar] [CrossRef]
- Angamarca-Avendaño, D.-A.; Saquicela-Moncayo, J.-F.; Capa-Carrillo, B.-H.; Cobos-Torres, J.-C. Charge Equalization System for an Electric Vehicle with a Solar Panel. Energies 2023, 16, 3360. [Google Scholar] [CrossRef]
- Umair, M.; Hidayat, N.M.; Ahmad, A.S.; Ali, N.H.N.; Mawardi, M.I.M.; Abdullah, E.; Balachandran, P.K. A renewable approach to electric vehicle charging through solar energy storage. PLoS ONE 2024, 19, e0297376. [Google Scholar] [CrossRef] [PubMed]
- Zerouali, M.; El Ougli, A.; Tidhaf, B. A robust fuzzy logic PI controller for solar system battery charging. Int. J. Power Electron. Drive Syst. (IJPEDS) 2023, 14, 384–394. [Google Scholar] [CrossRef]
- Budea, S.; Safta, C.A. Review on Modern Photovoltaic Panels –Technologies and Performances. Earth Environ. Sci. 2021, 664, 012032. [Google Scholar] [CrossRef]
- Gezelius, M.; Mortazavi, R. Effect of Having Solar Panels on the Probability of Owning Battery Electric Vehicle. World Electr. Veh. J. 2022, 13, 125. [Google Scholar] [CrossRef]
- Sinuraya, A.; Sinaga, D.H.; Simamora, Y. Analysis of LiFePO4 Battery Size, Capacity, and Charging in Electric Vehicles with BLDC Motor Drive. In Proceedings of the 4th International Conference on Innovation in Education, Science and Culture, ICIESC 2022, Medan, Indonesia, 11 October 2022. [Google Scholar] [CrossRef]
- Livinti, P.; Culea, G.; Banu, I.V.; Vernica, S.G. Comparative Study of a Buck DC-DC Converter Controlled by the MPPT (P&O) Algorithm without or with Fuzzy Logic Controller. Appl. Sci. 2024, 14, 7628. [Google Scholar] [CrossRef]
Time | SOC | Ib | Ub | |||
---|---|---|---|---|---|---|
Battery (Lead–Acid) | Battery (Lithium-Ion) | Battery (Lead–Acid) | Battery (Lithium-Ion) | Battery (Lead–Acid) | Battery (Lithium-Ion) | |
0 | 44.999 | 44.999 | 3.335 | 3.08 | 11.846 | 12.898 |
4 | 44.996 | 44.996 | 3.01 | 3 | 11.843 | 12.897 |
8 | 44.996 | 44.995 | −3.069 | −2.961 | 11.897 | 12.914 |
12 | 44.998 | 44.998 | −3.163 | −3.08 | 11.92 | 12.914 |
16 | 45.002 | 45.002 | −2.914 | −2.957 | 11.943 | 12.914 |
20 | 45.005 | 45.005 | −2.999 | −2.883 | 11.967 | 12.914 |
24 | 45.008 | 45.008 | −1.563 | −1.409 | 11.98 | 12.911 |
28 | 45.009 | 45.009 | −1.361 | −1.12 | 11.984 | 12.909 |
32 | 45.01 | 45.01 | 0.007 | 0.008 | 11.983 | 12.906 |
36 | 45.01 | 45.01 | 0.007 | 0.008 | 11.982 | 12.906 |
40 | 45.009 | 45.01 | 3.022 | 3.032 | 11.958 | 12.9 |
Time | Usource | Isource | Ibattery | Ubattery | PWM Factor |
---|---|---|---|---|---|
12.25 | 26.1 | 0.98 | 1.32 | 22.95 | 130 |
12.30 | 26.1 | 1.07 | 1.37 | 23.12 | 146 |
12.35 | 26.1 | 1.20 | 1.47 | 23.27 | 157 |
12.40 | 26.1 | 1.28 | 1.57 | 23.30 | 161 |
12.45 | 26.0 | 1.37 | 1.65 | 23.38 | 176 |
12.50 | 26.0 | 1.48 | 1.70 | 23.46 | 188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livinti, P. A Comparative Study of Storage Batteries for Electrical Energy Produced by Photovoltaic Panels. Appl. Sci. 2025, 15, 8549. https://doi.org/10.3390/app15158549
Livinti P. A Comparative Study of Storage Batteries for Electrical Energy Produced by Photovoltaic Panels. Applied Sciences. 2025; 15(15):8549. https://doi.org/10.3390/app15158549
Chicago/Turabian StyleLivinti, Petru. 2025. "A Comparative Study of Storage Batteries for Electrical Energy Produced by Photovoltaic Panels" Applied Sciences 15, no. 15: 8549. https://doi.org/10.3390/app15158549
APA StyleLivinti, P. (2025). A Comparative Study of Storage Batteries for Electrical Energy Produced by Photovoltaic Panels. Applied Sciences, 15(15), 8549. https://doi.org/10.3390/app15158549