Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy
Abstract
1. Introduction
1.1. Moisture Problem in Building Heritage
1.2. Aim and Novelty
2. Materials and Methods
2.1. Description of Case Studies
2.2. Data Collection and Processing
- Minimal air infiltration;
- Shielded from direct sunlight;
- Reduced ground moisture influence: Located at a sufficient height;
- Distance from cooled surfaces: Positioned away from cold bridges or thermally conductive materials (e.g., metal fixtures) to avoid localized condensation bias;
- Central representative location: Situated in zones reflecting the broader microenvironment of the structure, rather than an edge or atypical conditions.
2.3. Metrics and Indicators
# | Param | Indicator | Calculation | Effect on Surface Humidity |
---|---|---|---|---|
1 | Tₚ | Dew Point Depression | Tₐᵢᵣ − Tₚ | Small depression (≤2.5 °C) → high condensation risk [53] |
2 | T-RH | Critical T-RH Zones | High T (>25 °C) + High RH (>60%) | High RH → hygroscopic salts in masonry dissolve absorbing moisture from the air; salts recrystallize during diurnal low-RH cycles [54] |
T ≈ 0 °C + RH > 80% | Freeze–thaw damage in masonry | |||
3 | RH% | RH% Fluctuation Index | RHd − CMAd | High RH swings + high T → condensation risk; low T + RH swings → frost damage |
4 | T°C | Diurnal Temperature Fluctuation | Td − CMAd | High fluctuations → material stress → micro-cracks → moisture ingress |
5 | RH% | Damp Effect Index | 1 − (σᵢₙ/σₒᵤ) | Low buffering (<0.5) → indoor climate closely follows outdoor swings; effective buffering (> 0.5) → indoor conditions are noticeably more stable than outdoors |
6 | RH% | RH Hazard Frequency | PDF of RH | Frequency > 20% → chronic mold risk |
7 | MR [g/kg] | Mixing Ratio Stability | 1 − (σᵢₙ/σₒᵤ) | Low buffering (<0.5) → indoor climate closely follows outdoor swings; effective buffering (> 0.5) → indoor conditions are noticeably more stable than outdoors |
8 | MR [g/kg] | Mixing Ratio Hazard Frequency | PDF of MR | Identify persistent humidity sources |
3. Results
3.1. Monitoring of the Microclimatic Conditions
3.2. Indicators Assessment
3.2.1. Dew Point Depression (DPD)
3.2.2. Critical T-RH Zones
- High T (max per year) + High RH (60–90%)
- Fluctuating T around 0 °C + High RH (>90%)
3.2.3. RH% Fluctuation Index
3.2.4. Diurnal Temperature Fluctuation (DTF)
3.2.5. RH% Damp Effect Index
3.2.6. RH Hazard Frequency
3.2.7. Mixing Ratio Stability
3.2.8. Mixing Ratio (MR) Hazard Frequency
4. Discussion
Effectiveness of Proposed Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Case Study | Data Logger Plan | NDT Test |
---|---|---|
Basilica di San Fedele Campaign: 2013–2014 Test year: 2014 | ||
Chiesa di San Giacomo Campaign: 2022–2024 Test year: 2022 | ||
Chiesa Di San Giorgio Campaign: 2011–2012 Test year: 2012 | ||
San Romerio Campaign: 2014–2025 Test year: 2014 | ||
Visconti-Venosta Palace Campaign: 2021–2023 Test year: 2022 | ||
Semadeni Palace Campaign: 2021–2023 Test year: 2022 | ||
Besta Palace Campaign: 2017–2023 Test year: 2022 | ||
Castello Masegra Campaign: 2014–2015 Test year: 2015 | ||
Chiesa di Sant’Ignazio Campaign: 2009–2011 Test year: 2010 | ||
Collegiata di San Vittore Mauro Campaign: 2021–2023 Test year: 2022 | ||
Museo Etnografico di Tirano Campaign: 2020–2023 Test year: 2021 | ||
Xenodochio di S. Perpetua Campaign: 2013–2014 Test year: 2014 | ||
Palazzo Pievani (ex biblioteca) Campaign: 2021–2023 Test year: 2021 |
Appendix B
Parameter | HOBO MX1104 | HOBO U12-013 | Lascar EL-USB-2+ * |
---|---|---|---|
Temperature | |||
Range | −20 °C to 70 °C (−4 °F to 158 °F) | −20 °C to 70 °C (−4 °F to 158 °F) | −35 °C to 80 °C (−31 °F to 176 °F) |
Accuracy | ±0.20 °C (0 °C to 50 °C)/±0.36 °F (32 °F to 122 °F) | ±0.35 °C (0 °C to 50 °C)/±0.63 °F (32 °F to 122 °F) | ±0.45 °C typical (5 °C to 60 °C)/±1.04 °F |
Resolution | 0.002 °C at 25 °C (0.004 °F at 77 °F) | 0.03 °C at 25 °C (0.05 °F at 77 °F) | 0.5 °C (1 °F) internal resolution |
Long-Term Drift | <0.1 °C/year (0.18 °F/year) | ±1 min/month (time accuracy at 25 °C/77 °F) | <0.02 °C/year (0.04 °F/year) |
Relative Humidity (RH) | |||
Range | 0% to 100% (−20 °C to 70 °C) | 5% to 95% RH | 0% to 100% RH |
Accuracy | ±2.5% (10–90% RH, typical), max ±3.5% (incl. hysteresis at 25 °C/77 °F); ±5% (<10% or >90% RH) | ±2.5% (10–90% RH, typical), max ±3.5% (incl. hysteresis); ±5% (<10% or >90% RH) | ±3% (20–80% RH) |
Resolution | 0.01% | 0.05% | 0.5% RH internal resolution |
Long-Term Drift | <1%/year (typical) | – | <0.25% RH/year |
Additional Notes | Exposure to >95% RH may temporarily increase max error by +1%. Operating range: −20 °C to 70 °C. Radio power: 1 mW (0 dBm) | – | Dew point accuracy (total error): typically 1.7 °C (−35 °C to 80 °C, 40–100% RH) |
Response Time | |||
Temperature | 11 min (90% in moving air at 1 m/s) | 6 min (90% in moving air at 1 m/s) | – |
RH | 30 sec (90% in moving air at 1 m/s) | 1 min (90% in moving air at 1 m/s) | – |
Data Capacity | – | 16,382 readings (T/RH) | – |
References
- Franzoni, E. State-of-the-art on methods for reducing rising damp in masonry. J. Cult. Herit. 2018, 31, S3–S9. [Google Scholar] [CrossRef]
- Jaroš, P.; Vertal’, M. Water transport in materials of historical buildings. IOP Conf. Ser. Mater. Sci. Eng. 2019, 566, 012011. [Google Scholar] [CrossRef]
- Rosina, E.; Romoli, E.; Pili, A.; Suma, M. Lesson learned on monitoring cultural heritage at risk under climate changes: Strategy, techniques and results. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1017–1024. [Google Scholar] [CrossRef]
- Martínez-Garrido, M.I.; Fort, R.; Gómez-Heras, M.; Valles-Iriso, J.; Varas-Muriel, M.J. A comprehensive study for moisture control in cultural heritage using non-destructive techniques. J. Appl. Geophys. 2018, 155, 36–52. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. Moisture in historical buildings from causes to the application of specific diagnostic methodologies. J. Cult. Herit. 2023, 61, 150–159. [Google Scholar] [CrossRef]
- Proietti, N.; Calicchia, P.; Colao, F.; De Simone, S.; Di Tullio, V.; Luvidi, L.; Prestileo, F.; Romani, M.; Tatì, A. Moisture Damage in Ancient Masonry: A Multidisciplinary Approach for In Situ Diagnostics. Minerals 2021, 11, 406. [Google Scholar] [CrossRef]
- Li, Y.H.; Gu, J.D. A more accurate definition of water characteristics in stone materials for an improved understanding and effective protection of cultural heritage from biodeterioration. Int. Biodeterior. Biodegrad. 2022, 166, 105338. [Google Scholar] [CrossRef]
- Sandrolini, F.; Franzoni, E. An operative protocol for reliable measurements of moisture in porous materials of ancient buildings. Build. Environ. 2006, 41, 1372–1380. [Google Scholar] [CrossRef]
- Janakiev, T.; Dimkić, I.; Aleksić, J.; Grbić, M.L.; Knežević, A.; Kosel, J.; Tavzes, Č.; Unković, N. Beneficial bacteria-based bioformulations as potential biocontrol and biocleaning solutions for stone heritage conservation. World J. Microbiol. Biotechnol. 2025, 41, 200. [Google Scholar] [CrossRef]
- Ljaljević Grbić, M.; Dimkić, I.; Janakiev, T.; Kosel, J.; Tavzes, Č.; Popović, S.; Knežević, A.; Legan, L.; Retko, K.; Ropret, P.; et al. Uncovering the role of autochthonous deteriogenic biofilm community: Rožanec mithraeum monument (Slovenia). Microb. Ecol. 2024, 87, 87. [Google Scholar] [CrossRef]
- Bionda, D. Salt Deterioration and Microclimate in Historical Buildings: Intermediary Report of the Project “Sustained Care of Sensitive Historical Monuments”; ETH Zürich: Zurich, Switzerland, 2004. [Google Scholar] [CrossRef]
- Frasca, F.; Verticchio, E.; Caratelli, A.; Bertolin, C.; Camuffo, D.; Siani, A.M. A Comprehensive Study of the Microclimate-Induced Conservation Risks in Hypogeal Sites: The Mithraeum of the Baths of Caracalla (Rome). Sensors 2020, 20, 3310. [Google Scholar] [CrossRef] [PubMed]
- Benavente, D.; Sanchez-Moral, S.; Fernandez-Cortes, A.; Cañaveras, J.C.; Elez, J.; Saiz-Jimenez, C. Salt damage and microclimate in the Postumius Tomb, Roman necropolis of Carmona, Spain. Environ. Earth Sci. 2011, 63, 1529–1543. [Google Scholar] [CrossRef]
- Fregonese, L.; Rosina, E.; Adami, A.; Bottacchi, M.C.; Romoli, E.; Lattanzi, D. Monitoring as strategy for planned conservation: The case of Sant’Andrea in Mantova (Mantua). Appl. Geomat. 2018, 10, 441–451. [Google Scholar] [CrossRef]
- Canali, F.; Della Torre, S.; Rosina, E.; Ammendola, A.; Zala, M. Il Monitoraggio di un Macrovolume (una Cattedrale): Il Duomo di Milano e la Sagrestia Nord. 2023. Available online: https://re.public.polimi.it/handle/11311/1228315 (accessed on 10 July 2025).
- Cantin, R.; Burgholzer, J.; Guarracino, G.; Moujalled, B.; Tamelikecht, S.; Royet, B.G. Field assessment of thermal behaviour of historical dwellings in France. Build. Environ. 2010, 45, 473–484. [Google Scholar] [CrossRef]
- UNI 10829:1999; Beni di Interesse Storico Artistico–Condizioni Ambientali di Conservazione–Misurazione ed Analisi. UNI: Milan, Italy, 1999.
- Costanzo, V.; Fabbri, K.; Schito, E.; Pretelli, M.; Marletta, L. Microclimate monitoring and conservation issues of a Baroque church in Italy: A risk assessment analysis. Build. Res. Inf. 2021, 49, 729–747. [Google Scholar] [CrossRef]
- Carotenuto, M.R.; Chinnici, I.; Camuffo, D.; della Valle, A.; Prestileo, F.; Megna, B.; Cavallaro, G.; Lazzara, G. Climate Risk and Conservation Challenges at Palermo’s Specola Museum. Heritage 2024, 7, 7165–7187. [Google Scholar] [CrossRef]
- Spagnuolo, A.; Vetromile, C.; Masiello, A.; Alberghina, M.F.; Schiavone, S.; Mantile, N.; Solino, G. Protecting Archaeological Collection: The Importance of Microclimatic Monitoring and preliminary diagnostic investigations in the Preservation of the “Sala delle Madri”. In Proceedings of the 2023 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Rome, Italy, 19–21 October 2023. [Google Scholar]
- Kramer, R.P.; Schellen, H.L.; van Schijndel, A.W.M. Impact of ASHRAE’s museum climate classes on energy consumption and indoor climate fluctuations: Full-scale measurements in museum Hermitage Amsterdam. Energy Build. 2016, 130, 286–294. [Google Scholar] [CrossRef]
- EN 16242:2012; Conservation of Cultural Heritage—Procedures and Instruments for Measuring. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2012. Available online: https://standards.iteh.ai/catalog/standards/cen/12d5d8fb-f047-4d49-a750-9349dff5f7f4/en-16242-2012 (accessed on 10 July 2025).
- SS-EN 15759-1:2011; Conservation of Cultural Property-Indoor Climate-Part 1: Guidelines for Heating Churches, Chapels and other Places of Worship. Swedish Institute for Standards: Stockholm, Sweden, 2011.
- Silva, H.E.; Henriques, F.M.A. Microclimatic analysis of historic buildings: A new methodology for temperate climates. Build. Environ. 2014, 82, 381–387. [Google Scholar] [CrossRef]
- Litti, G.; Audenaert, A.; Fabbri, K. Indoor Microclimate Quality (IMQ) certification in heritage and museum buildings: The case study of Vleeshuis museum in Antwerp. Build. Environ. 2017, 124, 478–491. [Google Scholar] [CrossRef]
- Fabbri, K.; Pretelli, M. Heritage buildings and historic microclimate without HVAC technology: Malatestiana Library in Cesena, Italy, UNESCO Memory of the World. Energy Build. 2014, 76, 15–31. [Google Scholar] [CrossRef]
- Ryhl-Svendsen, M.; Padfield, T.; Smith, V.A.; De Santis, F. The indoor climate in historic buildings without mechanical ventilation systems. In Healthy Build; National University of Singapore: Singapore, 2003. [Google Scholar]
- La Gennusa, M.; Rizzo, G.; Scaccianoce, G. Control of indoor environments in heritage buildings: Experimental measurements in an old Italian museum and proposal of a methodology. J. Cult. Herit. 2005, 6, 147–155. [Google Scholar] [CrossRef]
- Fabbri, K.; Bonora, A. Two new indices for preventive conservation of the cultural heritage: Predicted risk of damage and heritage microclimate risk. J. Cult. Herit. 2021, 47, 208–217. [Google Scholar] [CrossRef]
- D’Agostino, D.; Congedo, P.M. CFD modeling and moisture dynamics implications of ventilation scenarios in historical buildings. Build. Environ. 2014, 79, 181–193. [Google Scholar] [CrossRef]
- Racca, E.; Bertoni, D.; Ferrarese, S. Indexes for Estimating Outdoor and Indoor Microclimates: A Case Study at the San Panfilo Church in Tornimparte, Italy. Heritage 2024, 7, 6729–6748. [Google Scholar] [CrossRef]
- Metals, M.; Lesinskis, A.; Borodinecs, A.; Turauskis, K. Study on indoor air temperature and moisture behaviour in historical churches. Energy Build. 2024, 310, 114083. [Google Scholar] [CrossRef]
- Rose, W.B.; Gloss, S.L. Characterizing indoor humidity for comparison studies: The moisture balance approach. In Thermal Performance of the Exterior Envelopes of Whole Buildings-XIII International Conference, Proceedings of the 13th In-ternational Conference on Thermal Performance of the Exterior Envelopes of Whole Buildings 2016, Clearwater, USA, 4–8 December 2016; American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE): Peachtree Corners, GA, USA, 2016; pp. 372–379. [Google Scholar]
- Michalski, S. Relative Humidity: A Discussion of Correct/Incorrect Values. 1993. Available online: https://www.academia.edu/download/6442572/Michalski_1993_Relative_humidity_A_discussion_of_correct_incorrect_values.pdf (accessed on 10 July 2025).
- Camuffo, D. Microclimate for Cultural Heritage: Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Bertolin, C. Preservation of Cultural Heritage and Resources Threatened by Climate Change. Geosciences 2019, 9, 250. [Google Scholar] [CrossRef]
- Blavier, C.L.S.; Huerto-Cardenas, H.E.; Aste, N.; Del Pero, C.; Leonforte, F.; Della Torre, S. Adaptive measures for preserving heritage buildings in the face of climate change: A review. Build. Environ. 2023, 245, 110832. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.A.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. WIREs Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Silva, H.E.; Coelho, G.B.A.; Henriques, F.M.A. Climate monitoring in World Heritage List buildings with low-cost data loggers: The case of the Jerónimos Monastery in Lisbon (Portugal). J. Build. Eng. 2020, 28, 101029. [Google Scholar] [CrossRef]
- Frasca, F.; Verticchio, E.; Merello, P.; Zarzo, M.; Grinde, A.; Fazio, E.; García-Diego, F.-J.; Siani, A.M. A Statistical Approach for A-Posteriori Deployment of Microclimate Sensors in Museums: A Case Study. Sensors 2022, 22, 4547. [Google Scholar] [CrossRef]
- Camuffo, D.; Della Valle, A.; Becherini, F. The European Standard EN 15757 Concerning Specifications for Relative Humidity: Suggested Improvements for Its Revision. Atmosphere 2022, 13, 1344. [Google Scholar] [CrossRef]
- ARPA Lombardia. Request Data Form. Available online: https://www.arpalombardia.it/temi-ambientali/meteo-e-clima/form-richiesta-dati/ (accessed on 23 July 2025).
- Camuffo, D.; della Valle, A. Church heating: A balance between conservation and thermal comfort. In Proceedings of the Contribution to the Experts’ Roundtable on Sustainable Climate Management, Tenerife, Spain, 25–27 April 2007; Available online: https://www.getty.edu/conservation/our_projects/science/climate/paper_camuffo.pdf (accessed on 10 July 2025).
- Tringa, E.; Kavroudakis, D.; Tolika, K. Microclimate-Monitoring: Examining the Indoor Environment of Greek Museums and Historical Buildings in the Face of Climate Change. Heritage 2024, 7, 1400–1418. [Google Scholar] [CrossRef]
- Díaz-Arellano, I.; Zarzo, M. The CHEWMA Chart: A New Statistical Control Approach for Microclimate Monitoring in Preventive Conservation of Cultural Heritage. Sensors 2025, 25, 1242. [Google Scholar] [CrossRef]
- Lucero-Gómez, P.; Balliana, E.; Izzo, F.C.; Zendri, E. A new methodology to characterize indoor variations of temperature and relative humidity in historical museum buildings for conservation purposes. Build. Environ. 2020, 185, 107147. [Google Scholar] [CrossRef]
- Baker, P.H.; Galbraith, G.H.; McLean, R.C. Temperature gradient effects on moisture transport in porous building materials. Build. Serv. Eng. Res. Technol. 2009, 30, 37–48. [Google Scholar] [CrossRef]
- Zhao, J.; Su, J.; Bi, W.; Zhang, Z.; Yao, S.; Ni, P.; Yan, Z. Hygroscopic properties of salt-containing earthen plasters in the Mogao Grottoes: An experimental study. npj Herit. Sci. 2025, 13, 208. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Yang, D.; Xue, S. Imaging of unsaturated moisture flow inside cracked porous brick using electrical capacitance volume tomography. J. Build. Eng. 2023, 64, 105626. [Google Scholar] [CrossRef]
- ASHRAE. Museums, Galleries, Archives and Libraries. In ASHRAE Handbook—HVAC Applications; American Society of Heating, Refrigerating, and Air-Conditioning Engineers: Atlanta, GA, USA, 2007; Chapter 21; pp. 21.1–21.23. [Google Scholar]
- Krüger, E.L.; Diniz, W. Relationship between indoor thermal comfort conditions and the Time Weighted Preservation Index (TWPI) in three Brazilian archives. Appl. Energy 2011, 88, 712–723. [Google Scholar] [CrossRef]
- Reilly, J. New Tools for Preservation: Assessing Long-Term Environmental Effects on Library and Archives Collections; Educational Resources Information Center: Washington, DC, USA, 1995. [Google Scholar]
- Pender, R.J. The behaviour of water in porous building materials and structures. Stud. Conserv. 2004, 49, 49–62. [Google Scholar] [CrossRef]
- Rijniers, L. Salt Crystallization in Porous Materials: An NMR Study; Eindhoven University of Technology: Eindhoven, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Maissen, M. On the Subsequent Vaulting of Churches in the Late Gothic Period: The Collegiate Church of San Vittore Mauro in Poschiavo, Switzerland. In Iron, Steel and Buildings: Studies in the History of Construction; Construction History Society: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Ferreira, C.; de Freitas, V.P.; Delgado, J.M.P.Q. The Influence of Hygroscopic Materials on the Fluctuation of Relative Humidity in Museums Located in Historical Buildings. Stud. Conserv. 2020, 65, 127–141. [Google Scholar] [CrossRef]
- Bertolin, C.; Camuffo, D.; Bighignoli, I. Past reconstruction and future forecast of domains of indoor relative humidity fluctuations calculated according to EN 15757:2010. Energy Build. 2015, 102, 197–206. [Google Scholar] [CrossRef]
- Ruiz Valero, L.; Flores Sasso, V.; Prieto Vicioso, E. In situ assessment of superficial moisture condition in façades of historic building using non-destructive techniques. Case Stud. Constr. Mater. 2019, 10, e00228. [Google Scholar] [CrossRef]
- Spodek, J.; Rosina, E. Application of infrared thermography to historic building investigation. J. Archit. Conserv. 2009, 15, 65–81. [Google Scholar] [CrossRef]
- Cascione, V.; Hagentoft, C.E.; Maskell, D.; Shea, A.; Walker, P. Moisture Buffering in Surface Materials Due to Simultaneous Varying Relative Humidity and Temperatures: Experimental Validation of New Analytical Formulas. Appl. Sci. 2020, 10, 7665. [Google Scholar] [CrossRef]
Type of Space | Name | Abbrev. | Location | Orientation | Context | Construction Date | Mechanical Heating [Y/N] | Building Material |
---|---|---|---|---|---|---|---|---|
Inactive | Visconti-Venosta Palace | P-VEN | Tirano | NE-SW | Semi-dense urban | 15–18th C. | N | Stone masonry, plastered |
Museum | Besta Palace | P-BES | Teglio-Sondrio | N-E | Semi-dense urban | 15th C. | Y | Stone masonry, plastered, frescoed |
Active worship space | Collegiate Church of San Vittore Mauro | S-VITT | Poschiavo | E-W | Semi-dense urban | 13–17th C. | Y | Stone masonry, frescoed |
Inactive | Semadeni Palace | P-SEM | Poschiavo, Switzerland | N-S | Open field, semi-urban | 19th C. | N | Stone masonry |
Active worship space | San Giacomo Church | S-GIA | Como | NE- SW | Dense urban | 11th C. | N | Moltrasio stone, brick, faux marble |
Inactive | Palazzo Pievani (ex biblioteca) | P-PIE | Tirano | NE-SW | Semi-dense urban | 12–16th C. | N | Stone masonry |
Inactive, under refurbishment | Museo Etnografico di Tirano | MU-TI | Tirano | E-W | Semi-dense, semi-urban | 20th C. | N | Stone masonry |
Inactive | Castello Masegra | C-MAS | Sondrio | E-W | Mountainous, semi-urban | 11–16th c. | N | Stone masonry, brick |
Active worship space | Xenodochio di S. Perpetua | S-PER | Tirano | E-W | Suburban, mountainous | 11–13th C. | N | Split stone walls, plaster |
Inactive | Basilica of San Fedele | S-FED | Como | NE-SW | Dense urban | 10th–12th C. | Y | Granite, marble, Moltrasio stone |
Under restoration | San Romerio Church | S-R | Bursio- Switzerland | NE-SW | Open field, mountainous | 17th C. | N | Stone masonry |
Active worship space | San Giorgio Church | S-GIO | Mandello del Lario (LC) | NW-SE | Suburban | 12th–15th C. | N | Split stone walls, lime plaster |
Active worship space | Sant’Ignazio Church | S-IGN | Ponte in Valtellina | E-W | Semi-dense urban | 17th C. | N | Stone masonry, plastered, frescoed |
P-VEN | P-BES | S-VITT | P-SEM | S-GIA | P-PIE | MU-TI | C-MAS | S-PER | S-FED | S-ROM | S-GIO | S-IGN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | S3 | S4 | S03 | Alcova 2 | ABSIDE | S2 | S 04 | S03 | ALTARE | IV°Navata | ABSIDE | ABSIDE | ALTARE T |
Orientation | SE | N | S | S | E | SE | SE | W | W | S | NE | E | E |
Floor | 1st | GR | GR | 1st | GR | GR | GR | GR | GR | Nave | altar | Apse | altar |
H [m] | 6 | 0.6 | 1.5 | 5 | 1.5 | 2.7 | 1 | 1 | 0.5 | 6 | 1.5 | 1.5 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosina, E.; Esmaeilian Toussi, H. Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy. Appl. Sci. 2025, 15, 8542. https://doi.org/10.3390/app15158542
Rosina E, Esmaeilian Toussi H. Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy. Applied Sciences. 2025; 15(15):8542. https://doi.org/10.3390/app15158542
Chicago/Turabian StyleRosina, Elisabetta, and Hoda Esmaeilian Toussi. 2025. "Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy" Applied Sciences 15, no. 15: 8542. https://doi.org/10.3390/app15158542
APA StyleRosina, E., & Esmaeilian Toussi, H. (2025). Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy. Applied Sciences, 15(15), 8542. https://doi.org/10.3390/app15158542