Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers
Abstract
1. Introduction
2. Data Source Integrity and Parametric Space Definition
2.1. Variable Selection: Engineering Rationale
2.2. Data Source Integrity and Inclusion Criteria
- X1: Transport Distance (km)—10 levels ranging from 5 to 250 km, with a step size of 27.2 km.
- X2: Energy Intensity (kWh/ton)—6 levels between 0.8 and 2.0 kWh/ton, increasing by 0.24 kWh/ton per level.
- X3: Moisture Content (%)—6 levels from 2% to 12%, with a step size of 2%.
- X4: Gradation Adjustment (categorical)—3 levels (0: none, 1: moderate, 2: major)
- X5: Grid CO2 Factor (kg/kWh) –9 levels between 0.3 and 1.0 kg CO2/kWh, incremented by 0.0875 kg CO2/kWh.
2.3. Output Variable Definitions and Calculation Methods
3. Methodology
3.1. Predictive Modeling Using Tree-Based Ensemble Learning Algorithms
3.2. Feature Importance and Interpretability Using SHAP
3.3. Formulation of the Multi-Objective Optimization Problem
3.4. Optimization Using NSGA-II
- Initialization: A random initial population P0P_0P0 of size 200 was generated within the feasible bounds of the five decision variables (X1–X5).
- Variation: Crossover and mutation operators were applied to create an offspring population Gt, effectively doubling the size to Pt + Gt. Simulated binary crossover (SBX) was used with a probability of 0.9, and polynomial mutation with a probability of 0.1.
- Non-dominated sorting: All candidate solutions were ranked based on Pareto dominance. Rank 1 included the non-dominated Pareto set, followed by subsequent dominated layers (Rank 2, Rank 3, etc.).
- Crowding distance calculation: Within each rank, individuals were assigned a crowding distance value based on their Manhattan distance to neighbors in objective space. This distance preserves solution diversity and prevents premature convergence.
- Selection: Elitist selection was applied. Individuals with higher ranks and greater crowding distances were selected to form the next generation Pt+1, ensuring both convergence and diversity.
- Termination: The loop was repeated until either 250 generations were completed or a predefined early-stopping criterion was met (hypervolume improvement < 1% over 20 generations).
3.5. Decision Making Using TOPSIS
- : Distance of alternative i to the ideal solution (lower cost and emission),
- : Distance of alternative i to the anti-ideal solution (higher cost and emission),
- wj: Weight assigned to criterion j,
- rij: Normalized value of criterion j for alternative i,
- : Ideal (best) value for criterion j,
- : Anti-ideal (worst) value for criterion j,
- m: Total number of criteria (here, m = 2; cost and emission).
3.6. Uncertainty Propagation with Triangular Distributions
4. Results and Discussion
4.1. Predictive Model Performance and Interpretation
4.2. Feature Importance and SHAP Analysis
4.3. Multi-Objective Optimization Results
4.4. Optimal Solution Selection and Practical Interpretation
- Transport Distance (x1): 47 km
- Energy Intensity (x2): 1.21 kWh/ton
- Moisture Content (x3): 6.2%
- Gradation Adjustment Level (x4): Level 1
- Grid CO2 Factor (x5): 0.47 kg CO2/kWh
- Total cost: 24.6 USD/m3
- Total CO2 Emission: 74.8 kg/m3
4.5. Robustness of the Optimal Configuration Under Uncertainty
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nwakaire, C.M.; Yap, S.P.; Onn, C.C.; Yuen, C.W.; Ibrahim, H.A. Utilisation of recycled concrete aggregates for sustainable highway pavement applications: A review. Constr. Build. Mater. 2020, 235, 117444. [Google Scholar] [CrossRef]
- Hapendi, N.H.; Ali, D.S.H. Exploring the potential of recycled aggregates in modern construction: Challenges and innovations. Int. J. Adv. Eng. Res. Sci. 2025, 12, 609276. [Google Scholar] [CrossRef]
- Mica, N.G.; Rios, S.; Viana da Fonseca, A.; Fortunato, E. The use of steel slags in transport infrastructures: A critical review. Geotech. Test. J. 2024, 47, GTJ20230297. [Google Scholar] [CrossRef]
- Kumar, P.; Shukla, S. Utilization of steel slag waste as construction material: A review. Mater. Today Proc. 2023, 78, 145–152. [Google Scholar] [CrossRef]
- Zhu, J.F.; Wang, Z.Q.; Tao, Y.L.; Ju, L.Y.; Yang, H. Macro–micro investigation on stabilization sludge as subgrade filler by the ternary blending of steel slag and fly ash and calcium carbide residue. J. Clean. Prod. 2024, 447, 141496. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Wang, Y.; Zhou, X.; Wang, S.; Liu, Q.; Yu, B. Towards the sustainable utilization of steel slag in asphalt pavements: A case study of moisture resistance and life cycle assessment. Case Stud. Constr. Mater. 2023, 18, e01722. [Google Scholar] [CrossRef]
- Li, L.; Ling, T.C.; Pan, S.Y. Environmental benefit assessment of steel slag utilization and carbonation: A systematic review. Sci. Total Environ. 2022, 806, 150280. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.; Howard, I. Balancing Availability, Quality, Economics, and the Environment When Using Steel Slag within Pavements. In Geo-Congress 2023; ASCE: Reston, VA, USA, 2023; Volume 2023, pp. 408–418. [Google Scholar] [CrossRef]
- Li, H.; Deng, Q.; Zhang, J.; Olanipekun, A.O.; Lyu, S. Environmental impact assessment of transportation infrastructure in the life cycle: Case study of a fast track transportation project in China. Energies 2019, 12, 1015. [Google Scholar] [CrossRef]
- Echenagucia, T.M.; Moroseos, T.; Meek, C. On the tradeoffs between embodied and operational carbon in building envelope design: The impact of local climates and energy grids. Energy Build. 2023, 278, 112589. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Aydin, N.S.; Mahdavi, I. A bi-level decision-making system to optimize a robust–resilient–sustainable aggregate production planning problem. Expert Syst. Appl. 2023, 228, 120476. [Google Scholar] [CrossRef]
- Lei, Z.; Qi, W.; Zhang, L.; Yang, J.; Zhuorui, Z. Preparation and comprehensive performance optimization of green insulation building materials based on blast furnace slag. J. Build. Eng. 2025, 106, 112591. [Google Scholar] [CrossRef]
- Jayarathna, C.P.; Agdas, D.; Dawes, L.; Yigitcanlar, T. Multi-objective optimization for sustainable supply chain and logistics: A review. Sustainability 2021, 13, 13617. [Google Scholar] [CrossRef]
- Naser, M.Z. A look into how machine learning is reshaping engineering models: The rise of analysis paralysis, optimal yet infeasible solutions, and the inevitable Rashomon paradox. Mach. Learn. Comput. Sci. Eng. 2025, 1, 19. [Google Scholar] [CrossRef]
- Anjum, A.; Hrairi, M.; Aabid, A.; Yatim, N.; Ali, M. Civil structural health monitoring and machine learning: A comprehensive review. Fract. Struct. Integr. 2024, 18, 43–59. [Google Scholar] [CrossRef]
- Vadyala, S.R.; Betgeri, S.N.; Matthews, J.C.; Matthews, E. A review of physics-based machine learning in civil engineering. Results Eng. 2022, 13, 100316. [Google Scholar] [CrossRef]
- Papadopoulos, S.; Azar, E.; Woon, W.L.; Kontokosta, C.E. Evaluation of tree-based ensemble learning algorithms for building energy performance estimation. J. Build. Perform. Simul. 2018, 11, 322–332. [Google Scholar] [CrossRef]
- Pahno, S.; Yang, J.J.; Kim, S.S. Use of machine learning algorithms to predict subgrade resilient modulus. Infrastructures 2021, 6, 78. [Google Scholar] [CrossRef]
- Sohel, I.H.; Rahman, S. Optimization of generation cost, environmental impact, and reliability of a microgrid using Non-dominated Sorting Genetic Algorithm-II. Planning 2020, 15, 1277–1284. [Google Scholar] [CrossRef]
- Zhao, B.; Xue, Y.; Xu, B.; Ma, T.; Liu, J. Multi-objective classification based on NSGA-II. Int. J. Comput. Sci. Math. 2018, 9, 539–546. [Google Scholar] [CrossRef]
- CSN EN 16258; Methodology for Calculation and Declaration of Energy Consumption and GHG Emissions of Transport Services (Freight and Passengers). CEN—European Committee for Standardization: Brussels, Belgium, 2012.
- ASTM D2940; Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports. ASTM International: West Conshohocken, PA, USA, 2020.
- López-Acevedo, F.J.; Herrero, M.J.; Escavy Fernández, J.I.; González Bravo, J. Potential reduction in carbon emissions in the transport of aggregates by switching from road-only transport to an intermodal rail/road system. Sustainability 2024, 16, 9871. [Google Scholar] [CrossRef]
- Dias, A.; Nezami, S.; Silvestre, J.; Kurda, R.; Silva, R.; Martins, I.; de Brito, J. Environmental and economic comparison of natural and recycled aggregates using LCA. Recycling 2022, 7, 43. [Google Scholar] [CrossRef]
- Klyuev, R.; Bosikov, I.; Gavrina, O.; Madaeva, M.; Sokolov, A. Improving the energy efficiency of technological equipment at mining enterprises. In Proceedings of the International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT 2019), St. Petersburg, Russia, 24–26 September 2019. [Google Scholar] [CrossRef]
- St-Jacques, M.; Bucking, S.; O’Brien, W.; Macdonald, I. Spatio-temporal electrical grid emission factors effects on calculated GHG emissions of buildings in mixed-grid environments. Sci. Technol. Built Environ. 2024, 30, 37–50. [Google Scholar] [CrossRef]
- Smith, W.A.; Wendt, L.M.; Bonner, I.J.; Murphy, J.A. Effects of storage moisture content on corn stover biomass stability, composition, and conversion efficacy. Front. Bioeng. Biotechnol. 2020, 8, 716. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Z.; Wang, F.; Wu, S.; Chen, Z.; Yang, C. The Life Cycle Energy Consumption and Emissions of Asphalt Pavement Incorporating Basic Oxygen Furnace Slag by Comparative Study. Sustainability 2021, 13, 4540. [Google Scholar] [CrossRef]
- Gschösser, F.; Wallbaum, H.; Adey, B.T. Environmental Analysis of New Construction and Maintenance Processes of Road Pavements in Switzerland. Struct. Infrastruct. Eng. 2014, 10, 1–24. [Google Scholar] [CrossRef]
- Sun, H.; Burton, H.V.; Huang, H. Machine learning applications for building structural design and performance assessment: State-of-the-art review. J. Build. Eng. 2021, 33, 101816. [Google Scholar] [CrossRef]
- Soleimani, F. Analytical seismic performance and sensitivity evaluation of bridges based on random decision forest framework. Structures 2021, 32, 329–341. [Google Scholar] [CrossRef]
- Huang, Y.; Huo, Z.; Ma, G.; Zhang, L.; Wang, F.; Zhang, J. Multi-objective optimization of fly ash-slag based geopolymer considering strength, cost and CO2; emission: A new framework based on tree-based ensemble models and NSGA-II. J. Build. Eng. 2023, 68, 106070. [Google Scholar] [CrossRef]
- Khan, A.; Huyan, J.; Zhang, R.; Zhu, Y.; Zhang, W.; Ying, G.; Shah, S.K. An ensemble tree-based prediction of Marshall mix design parameters and resilient modulus in stabilized base materials. Constr. Build. Mater. 2023, 401, 132833. [Google Scholar] [CrossRef]
- Wei, A.; Yu, K.; Dai, F.; Gu, F.; Zhang, W.; Liu, Y. Application of tree-based ensemble models to landslide susceptibility mapping: A comparative study. Sustainability 2022, 14, 6330. [Google Scholar] [CrossRef]
- Campagner, A.; Ciucci, D.; Cabitza, F. Aggregation models in ensemble learning: A large-scale comparison. Inf. Fusion 2023, 90, 241–252. [Google Scholar] [CrossRef]
- Ugirumurera, J.; Bensen, E.A.; Severino, J.; Sanyal, J. Addressing bias in bagging and boosting regression models. Sci. Rep. 2024, 14, 18452. [Google Scholar] [CrossRef]
- Eloudi, H.; Hssaisoune, M.; Reddad, H.; Namous, M.; Ismaili, M.; Krimissa, S.; Bouchaou, L. Robustness of Optimized Decision Tree-Based Machine Learning Models to Map Gully Erosion Vulnerability. Soil Syst. 2023, 7, 50. [Google Scholar] [CrossRef]
- Matin, M.; Azadi, M. Effect of Training Data Ratio and Normalizing on Fatigue Lifetime Prediction of Aluminum Alloys with Machine Learning. Int. J. Eng. Trans. A Basics 2024, 37, 1296–1305. [Google Scholar] [CrossRef]
- Alam, M.S.; Sultana, N.; Hossain, S.Z. Bayesian optimization algorithm based support vector regression analysis for estimation of shear capacity of FRP reinforced concrete members. Appl. Soft Comput. 2021, 105, 107281. [Google Scholar] [CrossRef]
- Arrighi, L.; Pennella, L.; Marques Tavares, G.; Barbon Junior, S. Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles. In Proceedings of the World Conference on Explainable Artificial Intelligence (XAI 2024), Lisbon, Portugal, 8–11 July 2024; Springer Nature: Cham, Switzerland, 2024; pp. 311–332. [Google Scholar] [CrossRef]
- Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Lyngdoh, G.A.; Zaki, M.; Krishnan, N.A.; Das, S. Prediction of concrete strengths enabled by missing data imputation and interpretable machine learning. Cem. Concr. Compos. 2022, 128, 104414. [Google Scholar] [CrossRef]
- Qiao, Q.; Eskandari, H.; Saadatmand, H.; Sahraei, M.A. An interpretable multi-stage forecasting framework for energy consumption and CO2; emissions for the transportation sector. Energy 2024, 286, 129499. [Google Scholar] [CrossRef]
- Asfi, M.; Warsito, B.; Wibowo, A. Enhancing Explainable AI: Leveraging SHAP for Transparent Decision-Making in Machine Learning. In Proceedings of the 2024 Ninth International Conference on Informatics and Computing (ICIC), Yogyakarta, Indonesia, 22–23 October 2024. [Google Scholar] [CrossRef]
- Feretzakis, G.; Sakagianni, A.; Anastasiou, A.; Kapogianni, I.; Bazakidou, E.; Koufopoulos, P.; Verykios, V.S. Integrating Shapley values into machine learning techniques for enhanced predictions of hospital admissions. Appl. Sci. 2024, 14, 5925. [Google Scholar] [CrossRef]
- Alomari, Y.; Andó, M. SHAP-based insights for aerospace PHM: Temporal feature importance, dependencies, robustness, and interaction analysis. Results Eng. 2024, 21, 101834. [Google Scholar] [CrossRef]
- Al-Saadi, I.; Wang, H.; Chen, X.; Lu, P.; Jasim, A. Multi-objective optimization of pavement preservation strategy considering agency cost and environmental impact. Int. J. Sustain. Transp. 2021, 15, 826–836. [Google Scholar] [CrossRef]
- Bravo, M.; Rojas, L.P.; Parada, V. An evolutionary algorithm for the multi-objective pick-up and delivery pollution-routing problem. Int. Trans. Oper. Res. 2019, 26, 302–317. [Google Scholar] [CrossRef]
- Rajkumar, M.; Mahadevan, K.; Kannan, S.; Baskar, S. NSGA-II technique for multi-objective generation dispatch of thermal generators with nonsmooth fuel cost functions. J. Electr. Eng. Technol. 2014, 9, 423–432. [Google Scholar] [CrossRef]
- Xue, Y. Mobile robot path planning with a non-dominated sorting genetic algorithm. Appl. Sci. 2018, 8, 2253. [Google Scholar] [CrossRef]
- Deeb, A.; Khokhlovskiy, V.; Shkodyrev, V. Adaptive Simulated Binary Crossover with Bayesian Optimization for Industrial Applications. In Proceedings of the 2025 International Russian Smart Industry Conference (SmartIndustryCon), Moscow, Russia, 20–22 March 2025; pp. 608–613. [Google Scholar] [CrossRef]
- Dong, W.; Huang, Y.; Lehane, B.; Ma, G. Multi-objective design optimization for graphite-based nanomaterials reinforced cementitious composites: A data-driven method with machine learning and NSGA-II. Constr. Build. Mater. 2022, 331, 127198. [Google Scholar] [CrossRef]
- Vásquez, L.O.P.; Redondo, J.L.; Hervás, J.D.Á.; Ramírez, V.M.; Torres, J.L. Balancing CO2; emissions and economic cost in a microgrid through an energy management system using MPC and multi-objective optimization. Appl. Energy 2023, 347, 120998. [Google Scholar] [CrossRef]
- Madanchian, M.; Taherdoost, H. A Comprehensive Guide to the TOPSIS Method for Multi-Criteria Decision Making. Sustain. Soc. Dev. 2023, 1, 2220. [Google Scholar] [CrossRef]
- Zhang, Y.; Chouinard, L.E.; Power, G.J.; Conciatori, D.; Sasai, K.; Bah, A.S. Multi-Objective Optimization for the Sustainability of Infrastructure Projects under the Influence of Climate Change. Sustain. Resil. Infrastruct. 2023, 8, 492–513. [Google Scholar] [CrossRef]
- Sinha, R.K.; Chaturvedi, N.D. Multi-Criteria Decision-Making in Carbon-Constrained Scenario for Sustainable Production Planning. Process Integr. Optim. Sustain. 2021, 5, 905–917. [Google Scholar] [CrossRef]
- Rahman, S.; Alali, A.S.; Baro, N.; Ali, S.; Kakati, P. A Novel TOPSIS Framework for Multi-Criteria Decision Making with Random Hypergraphs: Enhancing Decision Processes. Symmetry 2024, 16, 1602. [Google Scholar] [CrossRef]
- Karatzetzou, A. Uncertainty and Latin Hypercube Sampling in Geotechnical Earthquake Engineering. Geotechnics 2024, 4, 1007–1025. [Google Scholar] [CrossRef]
- Nyirandayisabye, R.; Li, H.; Dong, Q.; Hakuzweyezu, T.; Nkinahamira, F. Automatic Pavement Damage Predictions Using Various Machine Learning Algorithms: Evaluation and Comparison. Results Eng. 2022, 16, 100657. [Google Scholar] [CrossRef]
- Guo, R.; Fu, D.; Sollazzo, G. An Ensemble Learning Model for Asphalt Pavement Performance Prediction Based on Gradient Boosting Decision Tree. Int. J. Pavement Eng. 2022, 23, 3633–3646. [Google Scholar] [CrossRef]
- Liu, S.; Ryu, D.; Webb, J.A.; Lintern, A.; Guo, D.; Waters, D.; Western, A.W. A Multi-Model Approach to Assessing the Impacts of Catchment Characteristics on Spatial Water Quality in the Great Barrier Reef Catchments. Environ. Pollut. 2021, 288, 117337. [Google Scholar] [CrossRef] [PubMed]
- Kaniuka, J.; Ostrysz, J.; Groszyk, M.; Bieniek, K.; Cyperski, S.; Domański, P.D. Multicriteria Machine Learning Model Assessment—Residuum Analysis Review. Electronics 2024, 13, 810. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Crabbe, M.J.C.; Chandra Das, L. Statistical Learning-Based Spatial Downscaling Models for Precipitation Distribution. Adv. Meteorol. 2022, 2022, 3140872. [Google Scholar] [CrossRef]
- Robson, B.J.; Andrewartha, J.; Baird, M.E.; Herzfeld, M.; Jones, E.M.; Margvelashvili, N.; Wild-Allen, K. Evaluating the eReefs Great Barrier Reef marine model against observed emergent properties. In Proceedings of the 22nd International Congress on Modelling and Simulation (MODSIM2017), Hobart, Australia, 3–8 December 2017; Modelling and Simulation Society of Australia and New Zealand: Hobart, Australia, 2017; pp. 1976–1982. [Google Scholar] [CrossRef]
- Can, M.; Vaheddoost, B.; Safari, M.J.S. Data Reconstruction for Groundwater Wells Proximal to Lakes: A Quantitative Assessment for Hydrological Data Imputation. Water 2025, 17, 718. [Google Scholar] [CrossRef]
- Khiari, J.; Olaverri-Monreal, C. Boosting Algorithms for Delivery Time Prediction in Transportation Logistics. In Proceedings of the 2020 International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy, 17–20 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 251–258. [Google Scholar] [CrossRef]
- Qi, L.; Peng, X.; Yang, Q.; Xia, K.; Xu, B. Review of Research on Prediction Models for Residual Life of Concrete Structures. Coatings 2025, 15, 693. [Google Scholar] [CrossRef]
- Roni, M.S.; Lin, Y.; Hartley, D.S.; Thompson, D.N.; Hoover, A.N.; Emerson, R.M. Importance of incorporating spatial and temporal variability of biomass yield and quality in bioenergy supply chain. Sci. Rep. 2023, 13, 6813. [Google Scholar] [CrossRef]
- Meglin, R.; Kytzia, S.; Habert, G. Uncertainty, variability, price changes and their implications on a regional building materials industry: The case of Swiss canton Argovia. J. Clean. Prod. 2022, 330, 129944. [Google Scholar] [CrossRef]
- Eštoková, A.; Fabianová, M.; Radačovský, M. Life cycle assessment and environmental impacts of building materials: Evaluating transport-related factors. Eng. Proc. 2023, 57, 5. [Google Scholar] [CrossRef]
- An, P.; Han, Z.; Wang, K.; Cheng, J.; Zhou, J.; Rizkiana, J.; Xu, G. Process analysis of a two-stage fluidized bed gasification system with and without pre-drying of high-water content coal. Can. J. Chem. Eng. 2021, 99, 1498–1509. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Wang, B.; Li, H.; Ma, J.; Zhang, B.; Shan, Y. Trade-Offs between Direct Emission Reduction and Intersectoral Additional Emissions: Evidence from the Electrification Transition in China’s Transport Sector. Environ. Sci. Technol. 2023, 57, 11389–11400. [Google Scholar] [CrossRef]
- Luo, W.; Sandanayake, M.; Zhang, G.; Tan, Y. Construction Cost and Carbon Emission Assessment of a Highway Construction—A Case towards Sustainable Transportation. Sustainability 2021, 13, 7854. [Google Scholar] [CrossRef]
- de Bortoli, A. Understanding the Environmental Impacts of Virgin Aggregates: Critical Literature Review and Primary Comprehensive Life Cycle Assessments. J. Clean. Prod. 2023, 415, 137629. [Google Scholar] [CrossRef]
- Hossain, M.I.; Veginati, V.; Krukow, J. Thermodynamics Between RAP/RAS and Virgin Aggregates During Asphalt Concrete Production: A Literature Review; FHWA-ICT-15-015; Federal Highway Administration, Illinois Department of Transportation, Bureau of Materials and Physical Research: Springfield, IL, USA, 2015. Available online: https://rosap.ntl.bts.gov/view/dot/29561 (accessed on 29 July 2025).
- Knobloch, F.; Hanssen, S.V.; Lam, A.; Pollitt, H.; Salas, P.; Chewpreecha, U.; Mercure, J.F. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 2020, 3, 437–447. [Google Scholar] [CrossRef]
- Aryai, V.; Goldsworthy, M. Real-time high-resolution modelling of grid carbon emissions intensity. Sustain. Cities Soc. 2024, 104, 105316. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Ceranic, B.; Gallanagh, M.; Kadiri, K.O. Life cycle environmental performance of material specification: A BIM-enhanced comparative assessment. Int. J. Sustain. Build. Technol. Urban Dev. 2015, 6, 14–24. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, B.; Niu, D.; Li, A.; Guo, B. Optimized design of low-carbon mix ratio for concrete using NSGA-II based on GA-improved back propagation. Materials 2024, 17, 4077. [Google Scholar] [CrossRef]
- Krishna, U.S.R.; Badiger, M.; Chaudhary, Y.; Gowri, T.V.; Devi, E.J. Optimizing roads for sustainability: Inverted pavement design with life cycle cost analysis and carbon footprint estimation. Int. J. Transp. Sci. Technol. 2025, 17, 251–275. [Google Scholar] [CrossRef]
- Seyedashraf, O.; Bottacin-Busolin, A.; Harou, J.J. Assisting decision-makers select multi-dimensionally efficient infrastructure designs–Application to urban drainage systems. J. Environ. Manag. 2023, 336, 117689. [Google Scholar] [CrossRef] [PubMed]
- Schütze, F.; Stede, J.; Blauert, M.; Erdmann, K. EU taxonomy increasing transparency of sustainable investments. DIW Wkly. Rep. 2020, 10, 485–492. [Google Scholar] [CrossRef]
- Chowdury, M.H.; Hossain, M.M. A Framework for Selecting Optimal Strategies to Mitigate the Corporate Sustainability Barriers. Corp. Ownersh. Control 2015, 13, 462–481. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostafaei, H.; Santos, P.; Fallah Chamasemani, N. Enhancing the Mechanical Properties of Ultra-High-Performance Concrete (UHPC) through Silica Sand Replacement with Steel Slag. Buildings 2024, 14, 3520. [Google Scholar] [CrossRef]
- Guerra, K.; Haro, P.; Gutiérrez, R.E.; Gómez-Barea, A. Facing the High Share of Variable Renewable Energy in the Power System: Flexibility and Stability Requirements. Appl. Energy 2022, 310, 118561. [Google Scholar] [CrossRef]
Variable | Unit | Min | Max | Mean | Std. Dev. | Skewness |
---|---|---|---|---|---|---|
Transport Distance (X1) | km | 5.00 | 250 | 89.74 | 56.23 | 0.83 |
Processing Energy (X2) | kWh/ton | 0.65 | 2.10 | 1.38 | 0.47 | 0.48 |
Moisture Content (X3) | % | 2.10 | 15.0 | 8.72 | 3.19 | 0.22 |
Gradation Adjustment (X4) | categorical | 0 | 2.00 | 0.96 | 0.69 | 0.61 |
Grid CO2 Factor (X5) | kg CO2/kWh | 0.24 | 1.05 | 0.61 | 0.21 | 0.27 |
Model | Output | R | MAE | RMSE | a20 (%) |
---|---|---|---|---|---|
RFR | Cost (USD/m3) | 0.951 | 4.62 | 6.34 | 82.1 |
CO2 (kg/m3) | 0.938 | 7.25 | 9.17 | 79.3 | |
ERT | Cost (USD/m3) | 0.949 | 4.49 | 6.11 | 81.7 |
CO2 (kg/m3) | 0.942 | 6.98 | 8.86 | 80.4 | |
GBR | Cost (USD/m3) | 0.962 | 3.84 | 5.23 | 87.5 |
CO2 (kg/m3) | 0.955 | 5.72 | 7.44 | 85.2 | |
XGBR | Cost (USD/m3) | 0.960 | 4.07 | 5.34 | 86.2 |
CO2 (kg/m3) | 0.954 | 6.01 | 7.62 | 84.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbas, M. Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers. Appl. Sci. 2025, 15, 8516. https://doi.org/10.3390/app15158516
Akbas M. Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers. Applied Sciences. 2025; 15(15):8516. https://doi.org/10.3390/app15158516
Chicago/Turabian StyleAkbas, Merve. 2025. "Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers" Applied Sciences 15, no. 15: 8516. https://doi.org/10.3390/app15158516
APA StyleAkbas, M. (2025). Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers. Applied Sciences, 15(15), 8516. https://doi.org/10.3390/app15158516