The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bread Making Procedure
2.3. Farinograph Properties of Dough
2.4. Evaluation of Bread Quality Characteristics
2.5. Evaluation of Colour Parameters of Bread Crumb
2.6. Texture Profile Analysis (TPA) of Bread
2.7. Sensory Evaluation of Bread
2.8. Chemical Composition of Raw Materials and Bread
2.9. Statistical Analysis
3. Results and Discussion
3.1. Farinograph Properties of Dough
3.2. Chemical Composition of Raw Materials and Bread
3.3. Evaluation of Bread Quality Characteristics
3.4. Texture Profile Analysis (TPA) of Bread
3.5. Evaluation of Colour Parameters of Bread Crumb
3.6. Sensory Evaluation of Bread
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FMCG Gurus. Clean Label: Redefining the Bakery Sector. Food Business Insights 2020, June. Available online: https://eu-assets.contentstack.com/v3/assets/blt7a82e963f79cc4ec/blt02da71327172fae1/64b54ea9221d77b423491c9d/FBI-DM-CleanLabelBakery-0620.pdf (accessed on 28 April 2025).
- Anjos, O.; Pires, P.C.; Gonçalves, J.; Estevinho, L.M.; Mendonça, A.G.; Guiné, R.P. Plant-Based Beverages: Consumption Habits, Perception and Knowledge on a Sample of Portuguese Citizens. Foods 2024, 13, 3235. [Google Scholar] [CrossRef]
- Banaś, K.; Harasym, J. Current Knowledge of Content and Composition of Oat Oil—Future Perspectives of Oat as Oil Source. Food Bioprocess Technol. 2021, 14, 232–247. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Vanga, S.K.; Raghavan, V. How Well Do Plant Based Alternatives Fare Nutritionally Compared to Cow’s Milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef]
- Fernandes, C.G.; Sonawane, S.K.; Arya, S.S. Cereal Based Functional Beverages: A Review. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 914–919. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Pugajeva, I.; Borisova, A.; Zokaityte, E.; Lele, V.; Juodeikiene, G. The Quality of Wheat Bread with Ultrasonicated and Fermented By-Products from Plant Beverages Production. Front. Microbiol. 2021, 12, 652548. [Google Scholar] [CrossRef]
- McClements, D.J.; Newman, E.; Farrell, I. Plant-Based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Mohammad, E.W.; Guðmundsson, H.; Guðmundsdóttir, E.E.; Friðjónsson, Ó.H.; Karlsson, E.N.; Tuomisto, H.L. Life-Cycle Assessment of Yeast-Based Single-Cell Protein Production with Oat Processing Side-Stream. Sci. Total Environ. 2023, 873, 162318. [Google Scholar] [CrossRef]
- Rashed, M.S.; Gallagher, E.; Frias, J.M.; Pojić, M.; Pathania, S. Dough Rheology Properties as Affected by the Inclusion of Oat Drink Residue Flour: A Multivariate Analysis Approach. Int. J. Food Sci. Technol. 2025, 60, 101. [Google Scholar] [CrossRef]
- Zarzycki, P.; Wirkijowska, A.; Nawrocka, A.; Kozłowicz, K.; Krajewska, M.; Kłosok, K.; Krawęcka, A. Effect of Moldavian Dragonhead Seed Residue on the Baking Properties of Wheat Flour and Bread Quality. LWT 2022, 155, 112967. [Google Scholar] [CrossRef]
- AACC—American Association of Cereal Chemists. AACC Approved Methods of Analysis, 11th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2010. [Google Scholar]
- Wirkijowska, A.; Zarzycki, P.; Sobota, A.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. The Possibility of Using By-Products from the Flaxseed Industry for Functional Bread Production. LWT 2020, 118, 108860. [Google Scholar] [CrossRef]
- Felisiak, K.; Przybylska, S.; Tokarczyk, G.; Tabaszewska, M.; Słupski, J.; Wydurska, J. Effect of Chickpea (Cicer arietinum L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies. Foods 2024, 13, 2356. [Google Scholar] [CrossRef] [PubMed]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Lukas, B.F.; Morais, M.G.; Santos, T.D.; Costa, J.A.V. Spirulina for Snack Enrichment: Nutritional, Physical and Sensory Evaluations. LWT 2018, 90, 270–276. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists International. AOAC Official Methods, 20th ed.; AOAC: Rockville, MD, USA, 2016. [Google Scholar]
- Lu, Q.; Liu, H.; Wang, Q.; Liu, J. Sensory and Physical Quality Characteristics of Bread Fortified with Apple Pomace Using Fuzzy Mathematical Model. Int. J. Food Sci. Technol. 2017, 52, 1092–1100. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat Bread Fortification by Grape Pomace Powder: Nutritional, Technological, Antioxidant, and Sensory Properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, P.; Wirkijowska, A.; Teterycz, D.; Łysakowska, P. Innovations in Wheat Bread: Using Food Industry By-Products for Better Quality and Nutrition. Appl. Sci. 2024, 14, 3976. [Google Scholar] [CrossRef]
- Roozegar, M.H.; Shahedi, M.; Keramet, J.; Hamdami, N.; Roshanak, S. Effect of Coated and Uncoated Ground Flaxseed Addition on Rheological, Physical and Sensory Properties of Taftoon Bread. J. Food Sci. Technol. 2015, 52, 5102–5110. [Google Scholar] [CrossRef] [PubMed]
- Codină, G.G.; Istrate, A.M.; Gontariu, I.; Mironeasa, S. Rheological Properties of Wheat–Flaxseed Composite Flours Assessed by Mixolab and Their Relation to Quality Features. Foods 2019, 8, 333. [Google Scholar] [CrossRef]
- Huang, Z.H.; Zhao, Y.; Zhu, K.X.; Guo, X.N.; Peng, W.; Zhou, H.M. Effect of Barley β-Glucan on Water Redistribution and Thermal Properties of Dough. Int. J. Food Sci. Technol. 2019, 54, 2329–2337. [Google Scholar] [CrossRef]
- Skendi, A.; Biliaderis, C.G.; Papageorgiou, M.; Izydorczyk, M.S. Effects of Two Barley β-Glucan Isolates on Wheat Flour Dough and Bread Properties. Food Chem. 2010, 119, 1159–1167. [Google Scholar] [CrossRef]
- Verbeke, C.; Debonne, E.; Versele, S.; Van Bockstaele, F.; Eeckhout, M. Technological Evaluation of Fiber Effects in Wheat-Based Dough and Bread. Foods 2024, 13, 2582. [Google Scholar] [CrossRef]
- Chen, S.; He, G.; Xie, W.; Sun, M. Effect of Inulin Addition on Rheological Properties of Wheat Flour Dough and Noodle Quality. J. Chin. Inst. Food Sci. Technol. 2014, 14, 170–175. [Google Scholar]
- Sui, W.; Xie, X.; Liu, R.; Wu, T.; Zhang, M. Effect of Wheat Bran Modification by Steam Explosion on Structural Characteristics and Rheological Properties of Wheat Flour Dough. Food Hydrocoll. 2018, 84, 571–580. [Google Scholar] [CrossRef]
- Geng, M.; Luo, D.; Bai, Z.; Huang, J.; Feng, J.; Li, P.; Yue, C.; Wang, L. Effect of Arabinoxylan on Dough Characteristic and Flour Product Quality: A Review. Food Ferment. Ind. 2024, 50, 364–369. [Google Scholar] [CrossRef]
- Tao, H.; Li, Y.N.; Zhou, H.Y.; Sun, J.Y.; Fang, M.J.; Cai, W.H.; Wang, H.L. Unveiling the Binding Mechanism between Wheat Arabinoxylan and Different Molecular Weights of Wheat Glutenins during the Dough Mixing Process. Food Hydrocoll. 2025, 160, 110762. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Wilczewska, A.Z.; Markiewicz, K.H. Dietary Fiber-Induced Changes in the Structure and Thermal Properties of Gluten Proteins Studied by Fourier Transform-Raman Spectroscopy and Thermogravimetry. J. Agric. Food Chem. 2016, 64, 2094–2104. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rosell, C.M.; de Barber, C.B. Effect of the Addition of Different Fibres on Wheat Dough Performance and Bread Quality. Food Chem. 2002, 79, 221–226. [Google Scholar] [CrossRef]
- Verheyen, C.; Albrecht, A.; Herrmann, J.; Strobl, M.; Jekle, M.; Becker, T. The Contribution of Glutathione to the Destabilizing Effect of Yeast on Wheat Dough. Food Chem. 2015, 173, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Salama, F.M.; Azzam, M.A.; Abdl-Rahman, M.A.; Abo-El Naga, M.M.; Abdl-Hameed, M.S. Optimization of Processing Techniques for Production of Oat and Barley Milks. J. Food Dairy Sci. 2011, 2, 577–591. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Wu, G.; Wei, W.; Jin, Q.; Wang, X. Omega-9 Monounsaturated Fatty Acids: A Review of Current Scientific Evidence of Sources, Metabolism, Benefits, Recommended Intake, and Edible Safety. Crit. Rev. Food Sci. Nutr. 2025, 65, 1857–1877. [Google Scholar] [CrossRef] [PubMed]
- AlShehri, N.M.; AlMarzooqi, M.A. Consumers’ Knowledge, Attitudes, and Practices Toward Calorie Labeling in Riyadh City, Saudi Arabia: A Cross-Sectional Assessment. Front. Public Health 2022, 10, 893978. [Google Scholar] [CrossRef] [PubMed]
- Coniglio, S.; Shumskaya, M.; Vassiliou, E. Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology 2023, 12, 279. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, Z.; Homayouni, A.; Azizi, M.H.; Hosseini, S.J. Effects of Beta-Glucan and Resistant Starch on Wheat Dough and Prebiotic Bread Properties. J. Food Sci. Technol. 2018, 55, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ye, F.Y.; Li, S.; Wei, F.B.; Chen, J.F.; Zhao, G.H. Wheat Flour Enriched with Oat Beta-Glucan: A Study of Hydration, Rheological and Fermentation Properties of Dough. J. Cereal Sci. 2017, 75, 143–150. [Google Scholar] [CrossRef]
- Marciniak-Lukasiak, K.; Gadomska, K.; Sowinski, M.; Zbikowska, K.; Lukasiak, P.; Zbikowska, A. An Assessment of the Possibility of Using Plant Drinks in a Gluten-Free Bread Recipe. Food Sci. Technol. Qual. 2022, 29, 70–85. [Google Scholar] [CrossRef]
- Chochkov, R.; Dimitrov, N. Effect of Walnut Flour (Juglans spp.) Addition on Wheat Bread Crumb Porosity. BIO Web Conf. 2025, 170, 01009. [Google Scholar] [CrossRef]
- Pauly, A.; Delcour, J.A. Impact of Water-Extractable Components from Different Cereals on the Quality of Oat Bread. J. Cereal Sci. 2018, 79, 134–140. [Google Scholar] [CrossRef]
- Han, W.; Ma, S.; Li, L.; Zheng, X.; Wang, X. Rheological Properties of Gluten and Gluten-Starch Model Doughs Containing Wheat Bran Dietary Fibre. Int. J. Food Sci. Technol. 2018, 53, 2650–2656. [Google Scholar] [CrossRef]
- Shahbazi, M.; Yeganehzad, S.; Majchrzak, D.; Lieleg, O.; Winkeljann, B. Relation between Structural, Mechanical and Sensory Properties of Gluten-Free Bread as Affected by Modified Dietary Fibers. Food Chem. 2019, 277, 664–673. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Aldughpassi, A.D.; Sidhu, J.S.; Al-Foudari, M.Y.; Al-Othman, A.R. Effect of Psyllium Husk Addition on the Instrumental Texture and Consumer Acceptability of High-Fiber Wheat Pan Bread and Buns. Ann. Agric. Sci. 2021, 66, 75–80. [Google Scholar] [CrossRef]
- Koubaa, M.; Ben Jeddou, K.; Barba, F.J.; Chaari, F.; Besbes, S.; Ellouz Chaabouni, S. Effects of Almond Gum as Texture and Sensory Quality Improver in Wheat Bread. Int. J. Food Sci. Technol. 2017, 52, 205–213. [Google Scholar] [CrossRef]
- Dürrenberger, M.B.; Handschin, S.; Conde-Petit, B.; Escher, F. Visualization of Food Structure by Confocal Laser Scanning Microscopy (CLSM). LWT 2001, 34, 11–17. [Google Scholar] [CrossRef]
- Iuga, M.; Boestean, O.; Ghendov-Mosanu, A.; Mironeasa, S. Impact of Dairy Ingredients on Wheat Flour Dough Rheology and Bread Properties. Foods 2020, 9, 828. [Google Scholar] [CrossRef] [PubMed]
- Sandvik, P.; Nydahl, M.; Kihlberg, I.; Marklinder, I. Consumers’ Health-Related Perceptions of Bread–Implications for Labeling and Health Communication. Appetite 2018, 121, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Shen, S.; Fang, Z. Cereal Grain-Based Functional Beverages: From Cereal Grain Bioactive Phytochemicals to Beverage Processing Technologies, Health Benefits and Product Features. Crit. Rev. Food Sci. Nutr. 2022, 62, 2404–2431. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Jiménez, A.; Guerra-Hernández, E.; García-Villanova, B. Browning Indicators in Bread. J. Agric. Food Chem. 2000, 48, 4176–4181. [Google Scholar] [CrossRef]
Sample | WA [%] | DDT [min] | ST [min] | DS [FU] | FQN |
---|---|---|---|---|---|
CON | 56.9 ± 0.1 g | 4.1 ± 0.4 ef | 7.3 ± 0.2 g | 61.5 ± 3.5 bc | 77 ± 2 g |
BO25 | 59.9 ± 0.4 e | 3.8 ± 0.3 f | 8.2 ± 0.1 ef | 57 ± 1 cde | 89.3 ± 1.5 def |
BO50 | 61.7 ± 0.3 c | 4.1 ± 0.2 ef | 8.6 ± 0.1 cde | 55.7 ± 2.1 cde | 93 ± 2 cde |
BO75 | 63.6 ± 0.2 ab | 5.3 ± 0.2 bc | 9.0 ± 0.1 bcd | 57 ± 1 cde | 100 ± 2 bcd |
BO100 | 64.5 ± 0.4 a | 5.8 ± 0.1 ab | 9.3 ± 0.1 bc | 55 ± 2 def | 108 ± 3 b |
BS25 | 60.6 ± 0.8 de | 4.7 ± 0.2 d | 8.5 ± 0.6 de | 53.7 ± 4.5 ef | 88.3 ± 11 defg |
BS50 | 61.5 ± 0.2 cd | 4.5 ± 0 ed | 8.3 ± 0.2 def | 54 ± 1 def | 96 ± 2 bcde |
BS75 | 63.1 ± 0.4 b | 5.6 ± 0.2 abc | 9.6 ± 0.1 b | 56.3 ± 1.5 cde | 103 ± 3 bc |
BS100 | 63.8 ± 0.2 ab | 5.9 ± 0.1 a | 10.6 ± 0.4 a | 49.3 ± 1.5 f | 125 ± 5 a |
BM25 | 58.9 ± 0.3 f | 3.9 ± 0.2 f | 7.2 ± 0.1 g | 68 ± 1 a | 79 ± 2 fg |
BM50 | 60.2 ± 0.1 e | 4.1 ± 0.1 ef | 7.6 ± 0.2 fg | 66 ± 2 ab | 84 ± 3 efg |
BM75 | 61.8 ± 0.1 c | 5.0 ± 0.2 cd | 8.3 ± 0.2 def | 60 ± 1 bcd | 91 ± 2 cdef |
BM100 | 63.9 ± 0.2 ab | 5.6 ± 0.1 ab | 9.4 ± 0.1 bc | 57 ± 2 cde | 102 ± 4 bc |
Sample | Raw Materials and Bread Compositions [% d.b.] | |||||
---|---|---|---|---|---|---|
Ash | Protein | Fat | TDF | CHO | Energy [kcal/100 g] | |
Raw materials | ||||||
WF | 0.79 ± 0.01 b | 13.43 ± 1.43 a | 1.72 ± 0.08 d | 3.41 ± 0.51 b | 80.64 ± 1.86 a | 351.23 ± 2.83 a |
BO | 1.28 ± 0.03 a | 7.70 ± 0.03 b | 10.78 ± 0.23 a | 5.04 ± 0.24 a | 75.20 ± 0.56 b | 46.98 ± 1.28 c |
BS | 1.27 ± 0.07 a | 4.91 ± 0.29 c | 9.55 ± 0.31 b | 4.68 ± 0.07 a | 79.60 ± 1.16 a | 47.64 ± 0.84 c |
BM | 0.74 ± 0.07 b | 5.19 ± 0.03 c | 8.52 ± 0.31 c | 3.80 ± 0.07 b | 81.81 ± 1.38 a | 60.79 ± 3.09 b |
Bread | ||||||
CON | 2.30 ± 0.01 b | 13.45 ± 1.38 a | 1.81 ± 0.07 e | 3.58 ± 0.5 a | 78.70 ± 1.8 a | 222.38 ± 0.75 g |
BO25 | 2.30 ± 0.01 ab | 13.35 ± 1.36 a | 1.97 ± 0.07 de | 3.61 ± 0.48 a | 78.64 ± 1.76 a | 224.72 ± 0.75 f |
BO50 | 2.31 ± 0.01 ab | 13.25 ± 1.33 a | 2.13 ± 0.08 bcd | 3.63 ± 0.47 a | 78.58 ± 1.72 a | 229.18 ± 0.75 de |
BO75 | 2.32 ± 0.01 ab | 13.15 ± 1.31 a | 2.29 ± 0.08 abc | 3.66 ± 0.46 a | 78.51 ± 1.67 a | 229.88 ± 0.74 cde |
BO100 | 2.33 ± 0.01 a | 13.05 ± 1.28 a | 2.45 ± 0.08 a | 3.69 ± 0.44 a | 78.45 ± 1.63 a | 232.23 ± 0.74 b |
BS25 | 2.30 ± 0.01 ab | 13.30 ± 1.35 a | 1.95 ± 0.08 de | 3.60 ± 0.49 a | 78.72 ± 1.75 a | 223.03 ± 0.75 fg |
BS50 | 2.31 ± 0.01 ab | 13.15 ± 1.32 a | 2.09 ± 0.08 cd | 3.62 ± 0.48 a | 78.73 ± 1.71 a | 229.36 ± 0.77 de |
BS75 | 2.32 ± 0.01 ab | 12.99 ± 1.29 a | 2.23 ± 0.09 abc | 3.64 ± 0.47 a | 78.75 ± 1.66 a | 231.64 ± 0.77 bc |
BS100 | 2.33 ± 0.01 a | 12.84 ± 1.26 a | 2.37 ± 0.09 ab | 3.66 ± 0.46 a | 78.76 ± 1.62 a | 230.99 ± 0.76 bcde |
BM25 | 2.29 ± 0.01 b | 13.27 ± 1.35 a | 1.96 ± 0.08 de | 3.59 ± 0.48 a | 78.77 ± 1.75 a | 229.13 ± 0.77 e |
BM50 | 2.29 ± 0.01 b | 13.09 ± 1.32 a | 2.11 ± 0.08 cd | 3.59 ± 0.47 a | 78.84 ± 1.7 a | 231.43 ± 0.78 bcd |
BM75 | 2.29 ± 0.01 b | 12.90 ± 1.29 a | 2.26 ± 0.09 abc | 3.60 ± 0.46 a | 78.91 ± 1.66 a | 232.45 ± 0.78 b |
BM100 | 2.29 ± 0.01 b | 12.71 ± 1.26 a | 2.42 ± 0.09 a | 3.60 ± 0.45 a | 78.98 ± 1.61 a | 235.34 ± 0.79 a |
Sample | Bread Yield [%] | Baking Loss [%] | Specific Volume [cm3 g−1] | Crumb Moisture After 24 h [%] | Crumb Moisture After 72 h [%] |
---|---|---|---|---|---|
CON | 139.9 ± 0.5 h | 12.4 ± 0.3 a | 3.09 ± 0.04 efg | 43.3 ± 0.2 a | 42.4 ± 0.9 a |
BO25 | 143.6 ± 0.5 ef | 12.1 ± 0.3 a | 3.28 ± 0.01 bcde | 42.8 ± 0.2 a | 41.8 ± 0.8 a |
BO50 | 144.1 ± 0.3 ef | 12.0 ± 0.2 a | 3.21 ± 0.03 cdefg | 41.8 ± 0.1 ab | 40.6 ± 0.2 a |
BO75 | 147.6 ± 0.6 b | 12.0 ± 0.4 a | 3.25 ± 0.02 cdef | 41.7 ± 0.1 ab | 40.8 ± 0.3 a |
BO100 | 148.1 ± 0.3 b | 11.8 ± 0.2 a | 3.32 ± 0.03 abcd | 41.3 ± 0.1 ab | 39.9 ± 0.4 a |
BS25 | 143.2 ± 0.5 f | 12.4 ± 0.3 a | 3.47 ± 0.01 ab | 43.2 ± 0.4 a | 42.4 ± 0.1 a |
BS50 | 144.6 ± 1.1 de | 12.4 ± 0.7 a | 3.39 ± 0.07 abc | 41.7 ± 0.4 ab | 41.2 ± 0.3 a |
BS75 | 145.6 ± 0.1 d | 12.4 ± 0.0 a | 3.52 ± 0.05 a | 41.3 ± 0.9 ab | 40.6 ± 0.3 a |
BS100 | 149.8 ± 0.3 a | 10.9 ± 0.2 b | 3.27 ± 0.10 bcdef | 41.5 ± 0.6 ab | 40.0 ± 0.8 a |
BM25 | 141.7 ± 0.1 g | 12.4 ± 0.0 a | 3.06 ± 0.03 fg | 41.7 ± 0.5 ab | 40.9 ± 0.2 a |
BM50 | 143.3 ± 0.1 ef | 12.4 ± 0.0 a | 3.03 ± 0.13 gh | 41.2 ± 0.8 ab | 40.7 ± 1.4 a |
BM75 | 145.7 ± 0.5 cd | 11.8 ± 0.3 a | 3.10 ± 0.02 defg | 41.1 ± 0.4 ab | 40.8 ± 0.0 a |
BM100 | 147.1 ± 0.0 bc | 11.8 ± 0.0 a | 2.84 ± 0.17 h | 40.5 ± 0.1 b | 40.5 ± 1.0 a |
Sample | Hardness [N] | Cohesiveness [-] | Chewiness [N] | Springiness [-] | ||||
---|---|---|---|---|---|---|---|---|
24 h | 72 h | 24 h | 72 h | 24 h | 72 h | 24 h | 72 h | |
CON | 9.7 ± 0.8 abA | 15 ± 4.5 abcB | 0.62 ± 0.01 aA | 0.42 ± 0.03 aB | 5.2 ± 0.5 aA | 5.3 ± 1.4 abA | 0.86 ± 0.02 aA | 0.86 ± 0.01 aA |
BO25 | 8.5 ± 0.9 abA | 15.32 ± 1.25 abcdB | 0.51 ± 0.01 cA | 0.38 ± 0.02 abcB | 3.0 ± 0.4 cdB | 3.8 ± 0.4 bcdeA | 0.69 ± 0.03 dA | 0.65 ± 0.02 deA |
BO50 | 9.6 ± 1.6 abA | 16.38 ± 1.46 abcB | 0.46 ± 0.02 deA | 0.34 ± 0.02 cB | 2.9 ± 0.5 cdeB | 3.2 ± 0.3 cdefA | 0.66 ± 0.02 dA | 0.59 ± 0.02 efgA |
BO75 | 8.1 ± 0.6 abA | 12.66 ± 1.08 bcdB | 0.43 ± 0.02 eA | 0.33 ± 0.01 cB | 1.9 ± 0.2 efB | 2.3 ± 0.2 efA | 0.56 ± 0.01 eA | 0.55 ± 0.01 ghA |
BO100 | 8.2 ± 0.7 abA | 9.53 ± 1.02 dA | 0.38 ± 0.02 fA | 0.35 ± 0.02 bcB | 1.6 ± 0.2 fA | 1.7 ± 0.2 fA | 0.52 ± 0.02 eA | 0.51 ± 0.03 hA |
BS25 | 8.8 ± 2.3 abA | 13.75 ± 1.55 bcdB | 0.58 ± 0.01 bA | 0.4 ± 0.02 abB | 3.8 ± 1.1 bcA | 4.0 ± 1 bcdA | 0.75 ± 0.06 cA | 0.73 ± 0.07 bcA |
BS50 | 9.1 ± 0.8 abA | 14.76 ± 1.26 abcB | 0.51 ± 0.03 cA | 0.38 ± 0.02 abcB | 3.5 ± 0.3 bcdB | 3.9 ± 0.3 bcdA | 0.76 ± 0.01 bcA | 0.70 ± 0.01 cdA |
BS75 | 7.5 ± 0.9 bA | 11.45 ± 1.71 cdB | 0.51 ± 0.02 cA | 0.39 ± 0.01 abB | 2.6 ± 0.5 defA | 2.6 ± 0.5 defA | 0.67 ± 0.04 dA | 0.57 ± 0.05 fghB |
BS100 | 10.0 ± 0.3 aA | 17.33 ± 2.19 abB | 0.44 ± 0.02 eA | 0.35 ± 0.02 bcB | 3.0 ± 0.2 cdeB | 3.5 ± 0.3 cdeA | 0.68 ± 0.02 dA | 0.58 ± 0.02 efgB |
BM25 | 9.4 ± 0.8 abA | 19.44 ± 4.18 aB | 0.56 ± 0.03 bA | 0.39 ± 0.01 abB | 4.3 ± 0.2 abB | 6.2 ± 1.2 aA | 0.81 ± 0.01 abA | 0.82 ± 0.02 aA |
BM50 | 8.9 ± 0.8 abA | 14.59 ± 1.33 bcB | 0.51 ± 0.03 cA | 0.41 ± 0.03 aB | 3.4 ± 0.4 bcdB | 4.5 ± 0.8 bcA | 0.76 ± 0.02 bcA | 0.76 ± 0.03 bA |
BM75 | 8.3 ± 0.9 abA | 15.78 ± 1.93 abcB | 0.49 ± 0.02 cdA | 0.35 ± 0.03 bcB | 2.9 ± 0.2 cdeB | 3.8 ± 0.3 cdA | 0.71 ± 0.02 cdA | 0.70 ± 0.03 cdA |
BM100 | 9.9 ± 0.4 aA | 12.71 ± 1.36 bcdB | 0.44 ± 0.02 eA | 0.39 ± 0.04 abB | 2.9 ± 0.3 cdeA | 3.0 ± 0.2 defA | 0.67 ± 0.03 dA | 0.61 ± 0.01 efB |
Sample | L* | a* | b* | ∆E* | WI | BI | YI |
---|---|---|---|---|---|---|---|
CON | 63.7 ± 2.9 ab | 0.7 ± 0.2 ab | 14.9 ± 0.6 c | - | 60.8 ± 2.7 ab | 26.9 ± 2.1 c | 33.4 ± 2.2 d |
BO25 | 60.1 ± 2.4 cde | 0.6 ± 0.2 ab | 15.2 ± 0.7 bc | 3.9 ± 2.1 abcd | 57.2 ± 2.2 cde | 29.3 ± 2.1 bc | 36.2 ± 2 bcd |
BO50 | 60.1 ± 2.8 bcde | 0.6 ± 0.2 ab | 15.3 ± 1.4 abc | 4 ± 2.6 abcd | 57.2 ± 2.3 bcde | 29.5 ± 2.4 abc | 36.4 ± 2.4 abcd |
BO75 | 58.1 ± 2.7 e | 0.5 ± 0.1 ab | 15.4 ± 0.3 abc | 5.6 ± 2.7 ab | 55.4 ± 2.6 e | 30.9 ± 2.5 abc | 38 ± 2.6 ab |
BO100 | 57.8 ± 2.1 e | 0.6 ± 0.1 ab | 15.4 ± 0.5 abc | 6 ± 2.1 a | 55 ± 1.9 e | 31.1 ± 1.5 ab | 38.2 ± 1.5 ab |
BS25 | 61.5 ± 1.9 abcde | 0.6 ± 0.2 ab | 15 ± 0.7 c | 2.4 ± 1.8 bcd | 58.7 ± 1.8 abcde | 28.2 ± 2 bc | 34.9 ± 1.9 bcd |
BS50 | 61.4 ± 2.2 abcde | 0.7 ± 0.3 ab | 15.5 ± 1.2 abc | 2.7 ± 2.1 abcd | 58.3 ± 2.2 abcde | 29.4 ± 3.6 abc | 36.2 ± 3.4 abcd |
BS75 | 61.1 ± 1 abcde | 0.4 ± 0.2 b | 15.4 ± 0.5 abc | 2.7 ± 0.8 bcd | 58.2 ± 0.9 abcde | 28.8 ± 1.3 bc | 35.9 ± 1.3 bcd |
BS100 | 59.5 ± 3 de | 0.9 ± 0.2 a | 16.8 ± 0.8 a | 4.8 ± 2.6 abc | 56.2 ± 2.6 de | 33.5 ± 2 a | 40.3 ± 1.8 a |
BM25 | 63.6 ± 1.5 ab | 0.6 ± 0.2 ab | 15 ± 0.8 c | 1.5 ± 0.7 d | 60.6 ± 1.5 ab | 27.1 ± 2 c | 33.8 ± 2 cd |
BM50 | 62.7 ± 2.4 abcd | 0.6 ± 0.4 ab | 15.4 ± 1.1 bc | 2.5 ± 1 bcd | 59.6 ± 2.3 abcd | 28.3 ± 3.2 bc | 35.1 ± 3.1 bcd |
BM75 | 64.3 ± 1.7 a | 0.7 ± 0.2 ab | 15.8 ± 0.8 abc | 1.9 ± 0.9 d | 60.9 ± 1.5 a | 28.4 ± 1.9 bc | 35.2 ± 1.8 bcd |
BM100 | 63.5 ± 1.9 abc | 0.8 ± 0.2 ab | 16.5 ± 0.7 ab | 2.4 ± 0.9 cd | 59.9 ± 1.6 abc | 30.3 ± 1.7 abc | 37.1 ± 1.7 abc |
Sample | Appearance | Colour | Elasticity and Porosity | Smell | Taste | Overall Acceptability |
---|---|---|---|---|---|---|
CON | 4.9 ± 0.3 a | 4.8 ± 0.5 a | 4.9 ± 0.3 a | 4.9 ± 0.3 a | 4.9 ± 0.3 a | 4.9 ± 0.2 a |
BO25 | 4.9 ± 0.4 a | 4.8 ± 0.4 a | 4.3 ± 0.8 abc | 4.7 ± 0.5 a | 4.5 ± 0.8 a | 4.6 ± 0.4 ab |
BO50 | 4.9 ± 0.4 a | 4.7 ± 0.5 a | 4.5 ± 0.7 abc | 4.6 ± 0.5 a | 4.5 ± 0.6 a | 4.6 ± 0.3 ab |
BO75 | 4.9 ± 0.4 a | 4.7 ± 0.5 a | 4.1 ± 0.7 bc | 4.8 ± 0.4 a | 4.7 ± 0.6 a | 4.6 ± 0.3 ab |
BO100 | 4.7 ± 0.6 a | 4.4 ± 0.5 a | 3.9 ± 0.8 c | 4.7 ± 0.5 a | 4.5 ± 0.6 a | 4.4 ± 0.3 b |
BS25 | 4.9 ± 0.3 a | 4.7 ± 0.5 a | 4.5 ± 0.5 abc | 4.8 ± 0.4 a | 4.8 ± 0.4 a | 4.7 ± 0.3 ab |
BS50 | 4.9 ± 0.3 a | 4.8 ± 0.4 a | 4.9 ± 0.3 a | 4.8 ± 0.4 a | 4.8 ± 0.4 a | 4.8 ± 0.2 a |
BS75 | 4.9 ± 0.3 a | 4.4 ± 0.5 a | 4.7 ± 0.5 ab | 4.8 ± 0.4 a | 4.9 ± 0.3 a | 4.7 ± 0.2 ab |
BS100 | 4.9 ± 0.3 a | 4.4 ± 0.5 a | 4.4 ± 0.5 abc | 4.7 ± 0.5 a | 4.8 ± 0.4 a | 4.7 ± 0.2 ab |
BM25 | 4.6 ± 0.5 a | 4.5 ± 0.7 a | 4.6 ± 0.5 ab | 4.9 ± 0.4 a | 4.8 ± 0.4 a | 4.7 ± 0.4 ab |
BM50 | 4.9 ± 0.4 a | 4.7 ± 0.5 a | 4.7 ± 0.5 ab | 4.9 ± 0.3 a | 5.0± 0.0 a | 4.8 ± 0.2 a |
BM75 | 4.8 ± 0.4 a | 4.6 ± 0.5 a | 4.5 ± 0.5 abc | 4.9 ± 0.3 a | 5.0 ± 0.0 a | 4.8 ± 0.2 ab |
BM100 | 4.6 ± 0.5 a | 4.3 ± 0.7 a | 4.1 ± 0.7 bc | 5.0 ± 0 a | 4.9 ± 0.4 a | 4.6 ± 0.3 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirkijowska, A.; Zarzycki, P.; Teterycz, D.; Leszczyńska, D. The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages. Appl. Sci. 2025, 15, 8428. https://doi.org/10.3390/app15158428
Wirkijowska A, Zarzycki P, Teterycz D, Leszczyńska D. The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages. Applied Sciences. 2025; 15(15):8428. https://doi.org/10.3390/app15158428
Chicago/Turabian StyleWirkijowska, Anna, Piotr Zarzycki, Dorota Teterycz, and Danuta Leszczyńska. 2025. "The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages" Applied Sciences 15, no. 15: 8428. https://doi.org/10.3390/app15158428
APA StyleWirkijowska, A., Zarzycki, P., Teterycz, D., & Leszczyńska, D. (2025). The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages. Applied Sciences, 15(15), 8428. https://doi.org/10.3390/app15158428