Comparison of Dentoalveolar Changes with Miniscrew-Assisted Versus Conventional Rapid Palatal Expansion in Growing Patients: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Eligibility Criteria
- Question: Does a difference exist in dentoalveolar change between MARPE and CRPE?
- Participants: Growing patients (≤16 years) who underwent palatal expansion.
- Interventions: Miniscrew-assisted rapid palatal expansion (MARPE).
- Comparisons: Conventional rapid palatal expansion (CRPE).
- Outcomes: Tooth inclination and buccal bone thickness.
- Study design: Randomized controlled trials (RCTs).
2.2. Information Sources and Search Strategy
2.3. Study Selection and Data Extraction
2.4. Risk of Bias Assessment
2.5. Data Synthesis and Analysis
2.6. Assessment of Certainty of Evidence
3. Results
3.1. Study Selection and Data Extraction
3.2. Risk of Bias Assessment
3.3. Meta-Analysis
3.3.1. Tooth Inclination Changes
The Maxillary First Molars (Mx6)
The Maxillary First Premolars (Mx4)
3.3.2. Buccal Bone Thickness Changes
The Maxillary First Molars (Mx6)
The Maxillary First Premolars (Mx4)
3.3.3. Publication Bias Analysis
3.4. Certainty of Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haas, A.J. The treatment of maxillary deficiency by opening the midpalatal suture. Angle Orthod. 1965, 35, 200–217. Available online: https://angle-orthodontist.kglmeridian.com/view/journals/angl/35/3/article-p200.xml?isSearch=true (accessed on 22 July 2025). [PubMed]
- Park, J.J.; Park, Y.C.; Lee, K.J.; Cha, J.Y.; Tahk, J.H.; Choi, Y.J. Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: A cone-beam computed tomography study. Korean J. Orthod. 2017, 47, 77–86. [Google Scholar] [CrossRef]
- Garib, D.G.; Henriques, J.F.; Janson, G.; Freitas, M.R.; Coelho, R.A. Rapid maxillary expansion—Tooth tissue-borne versus tooth-borne expanders: A computed tomography evaluation of dentoskeletal effects. Angle Orthod. 2005, 75, 548–557. Available online: https://angle-orthodontist.kglmeridian.com/view/journals/angl/75/4/article-p548.xml?isSearch=true (accessed on 22 July 2025).
- Mehta, S.; Gandhi, V.; Vich, M.L.; Allareddy, V.; Tadinada, A.; Yadav, S. Long-term assessment of conventional and mini-screw-assisted rapid palatal expansion on the nasal cavity. Angle Orthod. 2022, 92, 315–323. [Google Scholar] [CrossRef]
- Cunha, A.C.D.; Lee, H.; Nojima, L.I.; Nojima, M.; Lee, K.J. Miniscrew-assisted rapid palatal expansion for managing arch perimeter in an adult patient. Dent. Press J. Orthod. 2017, 22, 97–108. [Google Scholar] [CrossRef]
- Tanaka, O.; Mota-Júnior, S.L. MARPE as an adjunct to orthodontic treatment. Dent. Press J. Orthod. 2023, 27, e22bbo26. [Google Scholar] [CrossRef]
- Throckmorton, G.S.; Buschang, P.H.; Hayasaki, H.; Pinto, A.S. Changes in the masticatory cycle following treatment of posterior unilateral crossbite in children. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 521–529. [Google Scholar] [CrossRef]
- Ugolini, A.; Doldo, T.; Ghislanzoni, L.T.; Mapelli, A.; Giorgetti, R.; Sforza, C. Rapid palatal expansion effects on mandibular transverse dimensions in unilateral posterior crossbite patients: A three-dimensional digital imaging study. Prog. Orthod. 2016, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Melsen, B. Palatal growth studied on human autopsy material. A histologic microradiographic study. Am. J. Orthod. 1975, 68, 42–54. [Google Scholar] [CrossRef]
- Melsen, B.; Melsen, F. The postnatal development of the palatomaxillary region studied on human autopsy material. Am. J. Orthod. 1982, 82, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Moon, W.; Wu, K.W.; MacGinnis, M.; Sung, J.; Chu, H.; Youssef, G.; Machado, A. The efficacy of maxillary protraction protocols with the micro-implant-assisted rapid palatal expander (MARPE) and the novel N2 mini-implant-a finite element study. Prog. Orthod. 2015, 16, 16. [Google Scholar] [CrossRef]
- Shin, H.; Hwang, C.J.; Lee, K.J.; Choi, Y.J.; Han, S.S.; Yu, H.S. Predictors of midpalatal suture expansion by miniscrew-assisted rapid palatal expansion in young adults: A preliminary study. Korean J. Orthod. 2019, 49, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Celenk-Koca, T.; Erdinc, A.E.; Hazar, S.; Harris, L.; English, J.D.; Akyalcin, S. Evaluation of miniscrew-supported rapid maxillary expansion in adolescents: A prospective randomized clinical trial. Angle Orthod. 2018, 88, 702–709. [Google Scholar] [CrossRef]
- Steinhauser, E.W. Midline splitting of the maxilla for correction of malocclusion. J. Oral Surg. 1972, 30, 413–422. [Google Scholar] [PubMed]
- Pogrel, M.A.; Kaban, L.B.; Vargervik, K.; Baumrind, S. Surgically assisted rapid maxillary expansion in adults. Int. J. Adult Orthod. Orthognath. Surg. 1992, 7, 37–41. [Google Scholar]
- Suri, L.; Taneja, P. Surgically assisted rapid palatal expansion: A literature review. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 290–302. [Google Scholar] [CrossRef]
- Carvalho, P.H.A.; Moura, L.B.; Trento, G.S.; Holzinger, D.; Gabrielli, M.A.C.; Gabrielli, M.F.R.; Pereira Filho, V.A. Surgically assisted rapid maxillary expansion: A systematic review of complications. Int. J. Oral. Maxillofac. Surg. 2020, 49, 325–332. [Google Scholar] [CrossRef]
- Suzuki, H.; Moon, W.; Previdente, L.H.; Suzuki, S.S.; Garcez, A.S.; Consolaro, A. Miniscrew-assisted rapid palatal expander (MARPE): The quest for pure orthopedic movement. Dent. Press J. Orthod. 2016, 21, 17–23. [Google Scholar] [CrossRef]
- Lee, R.J.; Moon, W.; Hong, C. Effects of monocortical and bicortical mini-implant anchorage on bone-borne palatal expansion using finite element analysis. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 887–897. [Google Scholar] [CrossRef]
- Choi, S.H.; Shi, K.K.; Cha, J.Y.; Park, Y.C.; Lee, K.J. Nonsurgical miniscrew-assisted rapid maxillary expansion results in acceptable stability in young adults. Angle Orthod. 2016, 86, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Seong, E.H.; Choi, S.H.; Kim, H.J.; Yu, H.S.; Park, Y.C.; Lee, K.J. Evaluation of the effects of miniscrew incorporation in palatal expanders for young adults using finite element analysis. Korean J. Orthod. 2018, 48, 81–89. [Google Scholar] [CrossRef]
- Cantarella, D.; Dominguez-Mompell, R.; Moschik, C.; Sfogliano, L.; Elkenawy, I.; Pan, H.C.; Mallya, S.M.; Moon, W. Zygomaticomaxillary modifications in the horizontal plane induced by micro-implant-supported skeletal expander, analyzed with CBCT images. Prog. Orthod. 2018, 19, 41. [Google Scholar] [CrossRef]
- Kapetanović, A.; Theodorou, C.I.; Bergé, S.J.; Schols, J.; Xi, T. Efficacy of Miniscrew-Assisted Rapid Palatal Expansion (MARPE) in late adolescents and adults: A systematic review and meta-analysis. Eur. J. Orthod. 2021, 43, 313–323. [Google Scholar] [CrossRef]
- Silva, I.; Miranda, F.; Bastos, J.; Garib, D. Comparison of alveolar bone morphology after expansion with hybrid and conventional Hyrax expanders. Angle Orthod. 2024, 94, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Copello, F.M.; Marañón-Vásquez, G.A.; Brunetto, D.P.; Caldas, L.D.; Masterson, D.; Maia, L.C.; Sant’Anna, E.F. Is the buccal alveolar bone less affected by mini-implant assisted rapid palatal expansion than by conventional rapid palatal expansion?-A systematic review and meta-analysis. Orthod. Craniofacial Res. 2020, 23, 237–249. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Atkins, D.; Best, D.; Briss, P.A.; Eccles, M.; Falck-Ytter, Y.; Flottorp, S.; Guyatt, G.H.; Harbour, R.T.; Haugh, M.C.; Henry, D.; et al. Grading quality of evidence and strength of recommendations. BMJ 2004, 328, 1490. [Google Scholar] [CrossRef]
- Schünemann, H.B.J.; Guyatt, G.; Oxman, A. (Eds.) GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 5 July 2025).
- Machado Pasqua, B.P.; Sendyk, M.; Barros André, C.; Batista de Paiva, J.; Wilmes, B.; Rino Neto, J. Periodontal evaluation after maxillary expansion with a tooth-bone-borne expander in growing patients: A randomized clinical trial. J. Orofac. Orthop. 2024. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Altieri, F.; Cassetta, M. Comparison of changes in skeletal, dentoalveolar, periodontal, and nasal structures after tooth-borne or bone-borne rapid maxillary expansion: A parallel cohort study. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e336–e344. [Google Scholar] [CrossRef]
- Bazargani, F.; Lund, H.; Magnuson, A.; Ludwig, B. Skeletal and dentoalveolar effects using tooth-borne and tooth-bone-borne RME appliances: A randomized controlled trial with 1-year follow-up. Eur. J. Orthod. 2021, 43, 245–253. [Google Scholar] [CrossRef]
- Jia, H.; Zhuang, L.; Zhang, N.; Bian, Y.; Li, S. Comparison of skeletal maxillary transverse deficiency treated by microimplant-assisted rapid palatal expansion and tooth-borne expansion during the post-pubertal growth spurt stage. Angle Orthod. 2021, 91, 36–45. [Google Scholar] [CrossRef]
- Gunyuz Toklu, M.; Germec-Cakan, D.; Tozlu, M. Periodontal, dentoalveolar, and skeletal effects of tooth-borne and tooth-bone-borne expansion appliances. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 97–109. [Google Scholar] [CrossRef]
- Rutili, V.; Mrakic, G.; Nieri, M.; Franceschi, D.; Pierleoni, F.; Giuntini, V.; Franchi, L. Dento-skeletal effects produced by rapid versus slow maxillary expansion using fixed jackscrew expanders: A systematic review and meta-analysis. Eur. J. Orthod. 2021, 43, 301–312. [Google Scholar] [CrossRef]
- Rutili, V.; Nieri, M.; Franceschi, D.; Pierleoni, F.; Giuntini, V.; Franchi, L. Comparison of rapid versus slow maxillary expansion on patient-reported outcome measures in growing patients: A systematic review and meta-analysis. Prog. Orthod. 2022, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, L.; Miranda, E.P.D.; Baião, F.C.S.; Lima, I.F.P.; Vieira, W.A.; César, C.; Pithon, M.M.; Maia, L.C.; Paranhos, L.R. Can rapid maxillary expansion affect speech sound production in growing patients? A systematic review. Orthod. Craniofacial Res. 2024, 27, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Han, Y.; Yang, S. Effect and stability of miniscrew-assisted rapid palatal expansion: A systematic review and meta-analysis. Korean J. Orthod. 2022, 52, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Chamberland, S. Maxillary expansion in nongrowing patients. Conventional, surgical, or miniscrew-assisted, an update. J. World Fed. Orthod. 2023, 12, 173–183. [Google Scholar] [CrossRef]
- Franchi, L.; Statie, M.D.; Clauser, T.; Migliorati, M.; Ugolini, A.; Bucci, R.; Rongo, R.; Nucera, R.; Portelli, M.; McNamara, J.A.; et al. Skeletal versus conventional anchorage in dentofacial orthopedics: An international modified Delphi consensus study. Prog. Orthod. 2025, 26, 9. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, K.-A.; Kim, H.-R.; Hong, S.O.; Kang, Y.-G. Treatment Effects of Miniscrew-Assisted Rapid Palatal Expansion in Adolescents Using Cone-Beam Computed Tomography. Appl. Sci. 2023, 13, 6309. [Google Scholar] [CrossRef]
- Firinciogullari, E.C.; Erdinc, A.E.; Celenk-Koca, T.; Walma, D.C.; Akyalcin, S. MARPE Improves Long-Term Stability of Maxillary Expansion in Adolescents. Orthod. Craniofacial Res. 2025. Epub ahead of print. [Google Scholar] [CrossRef]
- Baccetti, T.; Franchi, L.; McNamara, J.A., Jr. The Cervical Vertebral Maturation (CVM) Method for the Assessment of Optimal Treatment Timing in Dentofacial Orthopedics. Semin. Orthod. 2005, 11, 119–129. [Google Scholar] [CrossRef]
- Lin, L.; Ahn, H.W.; Kim, S.J.; Moon, S.C.; Kim, S.H.; Nelson, G. Tooth-borne vs. bone-borne rapid maxillary expanders in late adolescence. Angle Orthod. 2015, 85, 253–262. [Google Scholar] [CrossRef]
- Carter, A.; Mohamed, A. Dento-skeletal effects of different rapid maxillary expanders for growing patients-which is better? Evid. Based Dent. 2023, 24, 104–105. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.H.; de Castro, A.C.R.; Oh, S.; Kim, K.H.; Choi, S.H.; Nojima, L.I.; Nojima, M.; Lee, K.J. Skeletal and alveolar changes in conventional rapid palatal expansion (RPE) and miniscrew-assisted RPE (MARPE): A prospective randomized clinical trial using low-dose CBCT. BMC Oral Health 2022, 22, 114. [Google Scholar] [CrossRef]
- Araújo, M.C.; Bocato, J.R.; Oltramari, P.V.; de Almeida, M.R.; Conti, A.C.; Fernandes, T.M. Tomographic evaluation of dentoskeletal effects of rapid maxillary expansion using Haas and Hyrax palatal expanders in children: A randomized clinical trial. J. Clin. Exp. Dent. 2020, 12, e922–e930. [Google Scholar] [CrossRef]
- Kiliç, N.; Kiki, A.; Oktay, H. A comparison of dentoalveolar inclination treated by two palatal expanders. Eur. J. Orthod. 2008, 30, 67–72. [Google Scholar] [CrossRef]
- Garib, D.G.; Henriques, J.F.; Janson, G.; de Freitas, M.R.; Fernandes, A.Y. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: A computed tomography evaluation. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 749–758. [Google Scholar] [CrossRef]
- Empson, I.; Del Santo, M., Jr.; Kuo, C.L.; Vich, M.L.; Liu, D.; Yadav, S.; Mehta, S. Short- and long-term effects of conventional and miniscrew-assisted rapid palatal expansion on hard tissues using voxel-based superimposition of serial cone-beam computed tomography scans. Am. J. Orthod. Dentofac. Orthop. 2024, 166, 445–457.e442. [Google Scholar] [CrossRef] [PubMed]
- Bazargani, F.; Knode, V.; Plaksin, A.; Magnuson, A.; Ludwig, B. Three-dimensional comparison of tooth-borne and tooth-bone-borne RME appliances: A randomized controlled trial with 5-year follow-up. Eur. J. Orthod. 2023, 45, 690–702. [Google Scholar] [CrossRef]
- Pasqua, B.P.M.; André, C.B.; Paiva, J.B.; Tarraf, N.E.; Wilmes, B.; Rino-Neto, J. Dentoskeletal changes due to rapid maxillary expansion in growing patients with tooth-borne and tooth-bone-borne expanders: A randomized clinical trial. Orthod. Craniofacial Res. 2022, 25, 476–484. [Google Scholar] [CrossRef]
- Malmvind, D.; Golež, A.; Magnuson, A.; Ovsenik, M.; Bazargani, F. Three-dimensional assessment of palatal area changes after posterior crossbite correction with tooth-borne and tooth bone-borne rapid maxillary expansion. Angle Orthod. 2022, 92, 589–597. [Google Scholar] [CrossRef]
- Garib, D.; Miranda, F.; Palomo, J.M.; Pugliese, F.; da Cunha Bastos, J.C.; Dos Santos, A.M.; Janson, G. Orthopedic outcomes of hybrid and conventional Hyrax expanders. Angle Orthod. 2021, 91, 178–186. [Google Scholar] [CrossRef]
- Lagravère, M.O.; Ling, C.P.; Woo, J.; Harzer, W.; Major, P.W.; Carey, J.P. Transverse, vertical, and anterior-posterior changes between tooth-anchored versus Dresden bone-anchored rapid maxillary expansion 6 months post-expansion: A CBCT randomized controlled clinical trial. Int. Orthod. 2020, 18, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Davami, K.; Talma, E.; Harzer, W.; Lagravère, M.O. Long term skeletal and dental changes between tooth-anchored versus Dresden bone-anchored rapid maxillary expansion using CBCT images in adolescents: Randomized clinical trial. Int. Orthod. 2020, 18, 317–329. [Google Scholar] [CrossRef]
- Pham, V.; Lagravère, M.O. Alveolar bone level changes in maxillary expansion treatments assessed through CBCT. Int. Orthod. 2017, 15, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Canan, S.; Şenışık, N.E. Comparison of the treatment effects of different rapid maxillary expansion devices on the maxilla and the mandible. Part 1: Evaluation of dentoalveolar changes. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 1125–1138. [Google Scholar] [CrossRef] [PubMed]
- Mosleh, M.I.; Kaddah, M.A.; Abd ElSayed, F.A.; ElSayed, H.S. Comparison of transverse changes during maxillary expansion with 4-point bone-borne and tooth-borne maxillary expanders. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 599–607. [Google Scholar] [CrossRef]
- Lagravère, M.O.; Gamble, J.; Major, P.W.; Heo, G. Transverse dental changes after tooth-borne and bone-borne maxillary expansion. Int. Orthod. 2013, 11, 21–34. [Google Scholar] [CrossRef]
- Lagravère, M.O.; Carey, J.; Heo, G.; Toogood, R.W.; Major, P.W. Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs. traditional rapid maxillary expansion: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 304.e301–312; discussion 304–305. [Google Scholar] [CrossRef]
Study Year/ Nationality | Sample Size /Gender | Age | Data Collection | MARPE Design | CRPE Design | Expansion Protocol | Duration of Expansion | Retention | Outcomes | Results |
---|---|---|---|---|---|---|---|---|---|---|
Pasqua 2024 /Brazil [30] | 42 patients: TBB (12 female and 9 male); TB (5 female and 16 male) | TBB: 13.3 ± 1.3 y; TB: 13.2 ± 1.4 y | CBCT and clinical exam (pre- and 3 months post-expansion) | Hybrid hyrax: 2 miniscrews in anterior paramedian palate + molar bands | Conventional hyrax with molar bands (tooth-borne) | 1 turn (0.8 mm) initially, then 2/4 turns per day (0.2 mm each) | Until overcorrection; CBCT after 3 months | 3 months (expander removed before post-CBCT) | CBCT: Buccal and palatal bone thickness, marginal crest level, clinical attachment level (CAL), and gingival recession | Buccal bone loss: TB 1.3 ± 0.4 mm vs. TBB 0.5 ± 0.2 mm; molar tipping: TB 6.5° ± 2.1°, TBB 1.3° ± 1.0°; Nasal width gain: TB 1.4 ± 0.6 mm vs. TBB 2.6 ± 0.8 mm |
Altieri 2022 /Italy [31] | 36 enrolled, 26 analyzed: TB (8 female and 10 male); TBB (7 female and 11 male) | TBB: 12.3 ± 0.8 y; TB: 12.2 ± 0.3 y | CBCT (pre-treatment and 6 months post-expansion) | Computer-guided MARPE with 4 miniscrews in anterior/posterior paramedian regions | Conventional hyrax with molar bands (tooth-borne) | 1st day: 4 quarter turns; then 3 quarter turns/day (0.6 mm/day) | Screw opening until 8 mm; 6-month follow-up | 8 months (appliance left as retainer) | CBCT: Changes in maxillary base, alveolar, and zygomatic width; nasal cavity width; molar inclination; periodontal support | Maxillary base width: TB 2.89 ± 2.27 mm vs. TBB 6.79 ± 3.65 mm; Alveolar width: TB 6.02 ± 0.98 mm vs. TBB 5.10 ± 2.93 mm; Zygomatic width: TB 4.80 ± 1.57 mm vs. TBB 8.15 ± 1.38 mm; Nasal width: TB 3.10 ± 0.74 mm vs. TBB 5.00 ± 0.95 mm; Molar tipping: TB 6.01° ± 10.80°, TBB 0.17° ± 3.54° |
Bazargani 2021 /Sweden [32] | 52 patients: TB (13 female and 13 male), TBB (13 female and 13 male) | TB: 9.3 ± 1.3 y; TBB: 9.5 ± 1.2 y | CBCT and plaster models at T0, T1, T2 (1-year follow-up) | Tooth-bone-borne expander with 2 miniscrews (1.7 × 8 mm, Orthoeasy) placed in anterior palate | Hyrax expansion screw with bands on maxillary first molars and premolars (tooth-borne) | 2 quarter turns/day (0.5 mm/day) until overcorrection | Varied; analyzed T0–T2 (1 year) | 6 months post-expansion (device removed before T2) | CBCT: Skeletal and dental expansion; midpalatal suture width; nasal cavity change; molar tipping; stability; plaster model widths | Midpalatal suture expansion (S1_inf): TB 2.3 ± 0.5 mm vs. TBB 3.4 ± 0.9 mm; Nasal width (N1): TB 1.8 mm vs. TBB 3.5 mm; Post-expansion relapse: TB −1.4 mm, TBB −1.7 mm (intermolar width); Molar tipping: no significant difference at 1 year |
Jia 2021 /China [33] | 60 patients: MARPE (n = 30), Hyrax (n = 30) (gender not reported) | 12–16 y (mean age not reported) | CBCT (pre-treatment and 3 months post-expansion) | MARPE with 4 miniscrews in anterior paramedian palate + molar bands | Conventional hyrax with molar bands (tooth-borne) | 2 turns/day (0.2 mm per turn); until desired expansion | Until desired expansion | 3 months (expander maintained) | Buccal bone thickness, alveolar bone height, root length, and molar inclination | Buccal bone loss: Hyrax 0.75 mm vs. MARPE 0.34 mm; Alveolar height loss: Hyrax 1.76 mm vs. MARPE 0.60 mm; Molar tipping: Hyrax 5.67° vs. MARPE 1.78° |
Celenk-Koka 2018 /Turkey [13] | 40 patients (20 conventional RME (12 female and 8 male) and 20 miniscrew-supported RME (13 female and 7 male)) | Conventional RME: 13.84 ± 1.36 y; Miniscrew-supported RME: 13.81 ± 1.23 y | CBCT (pre- and post-expansion, 6-month retention) | Hyrax expansion screw individually fitted and supported by 4 mini-implants (1.8 mm × 9 mm, Orlus, Ortholution Co, Seoul, Korea) inserted into the palatal alveolar bone between the roots of first and second premolars, and between second premolars and first molars (bone-borne expansion) | Hyrax expansion screw with occlusal coverage of premolars and first molar (and extension for second molar) (tooth-borne expansion) | 2 turns/day (activation period: ~20 days) | ~20 days | 6 months (passive retention with same appliance) | Buccal alveolar bone width: measurement from the outermost point of the bone to the roots at the level of the bifurcation and trifurcation of the maxillary first premolars and maxillary first molars, respectively. | Sutural expansion: TB 1.3 ± 0.7 mm vs. TBB 3.6 ± 1.2 mm; Nasal width gain: TB 1.2 ± 1.1 mm vs. TBB 2.9 ± 1.7 mm; Incisive foramen: TB 1.4 ± 0.8 mm vs. TBB 3.2 ± 0.9 mm; Molar tipping: TB 3.98° ± 3.4°, TBB 1.3° ± 2.1° |
Toklu 2015 /Turkey [34] | 25 patients: TB (8 female and 5 male), TBB (6 female and 6 male) | TB: 14.3 ±2.3 y; TBB: 13.8 ±2.2 y | CBCT (pre- and 3 months post-expansion) | Hybrid hyrax: 2 miniscrews (1.8 × 9 mm) near 2nd/3rd palatal rugae + molar bands | Tooth-borne hyrax expansion screw attached to first premolars and first molars | 2 turns/day; average activation ~19–20 days | ~20 days | 3 months with expander, followed by transpalatal arch | CBCT: Periodontal changes (buccal/palatal bone thickness), skeletal width, and dental inclination of canines, premolars, and molars | 1st premolar expansion: TB 7.5 ± 4.2 mm vs. TBB 3.2 ± 2.6 mm; 2nd premolar: TB 8.0 ± 3.3 mm vs. TBB 4.5 ± 3.8 mm; Molar tipping: TB 6.8° ± 5.4°, TBB 2.4° ± 5.5°; Palatal bone gain: TB +1.7 ± 0.7 mm, TBB +1.3 ± 0.6 mm; Nasal width: TB 2.46 ± 1.69 mm, TBB 2.54 ± 1.94 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.b.; Chae, J.-M.; Park, J.H.; Kim, N.J.; Han, S.-H. Comparison of Dentoalveolar Changes with Miniscrew-Assisted Versus Conventional Rapid Palatal Expansion in Growing Patients: A Systematic Review and Meta-Analysis. Appl. Sci. 2025, 15, 8326. https://doi.org/10.3390/app15158326
Lee Hb, Chae J-M, Park JH, Kim NJ, Han S-H. Comparison of Dentoalveolar Changes with Miniscrew-Assisted Versus Conventional Rapid Palatal Expansion in Growing Patients: A Systematic Review and Meta-Analysis. Applied Sciences. 2025; 15(15):8326. https://doi.org/10.3390/app15158326
Chicago/Turabian StyleLee, Hwang bin, Jong-Moon Chae, Jae Hyun Park, Na Jin Kim, and Sung-Hoon Han. 2025. "Comparison of Dentoalveolar Changes with Miniscrew-Assisted Versus Conventional Rapid Palatal Expansion in Growing Patients: A Systematic Review and Meta-Analysis" Applied Sciences 15, no. 15: 8326. https://doi.org/10.3390/app15158326
APA StyleLee, H. b., Chae, J.-M., Park, J. H., Kim, N. J., & Han, S.-H. (2025). Comparison of Dentoalveolar Changes with Miniscrew-Assisted Versus Conventional Rapid Palatal Expansion in Growing Patients: A Systematic Review and Meta-Analysis. Applied Sciences, 15(15), 8326. https://doi.org/10.3390/app15158326