ASHM-YOLOv9: A Detection Model for Strawberry in Greenhouses at Multiple Stages
Abstract
Featured Application
Abstract
1. Introduction
- (a)
- A strawberry image dataset consisting of 2682 images was established via digital camera photography and data augmentation methods, which included a total of 13,668 strawberry samples across three growth stages.
- (b)
- An ASHM-YOLOv9 model for multistage strawberry recognition based on YOLOv9 was introduced. This model incorporates modules such as Alterable Kernel Convolution (AKConv), Squeeze-and-Excitation (SE) Networks, and Haar Wavelet Downsampling (HWD). For the constructed dataset, the model attained an accuracy of 97.7%.
- (c)
- A comparative analysis was conducted on the constructed dataset against other mainstream algorithms in the YOLO series, which demonstrated that our model performed the best.
2. Research Area and Dataset
2.1. Research Area and Data Collection
2.2. Dataset Preprocessing
2.3. Data Augmentation
2.4. Construction and Analysis of the Strawberry Dataset
3. Methods
3.1. YOLOv9 Object Detection Model
3.2. ASHM-YOLOv9 Object Detection Model
3.2.1. Alterable Kernel Convolution
3.2.2. Squeeze-and-Excitation Networks
3.2.3. HWD—ADown Module
3.2.4. MPDIoU Loss Function
4. Experiments and Results
4.1. Experimental Environment and Parameter Configuration
4.2. Evaluation Indicators
4.3. Experimental Results
4.3.1. Training Results of the ASHM-YOLOv9 Model
4.3.2. Ablation Experiment
4.4. Contrasting Model Performance Prior to and Following Enhancement
Evaluation of the Detection Performance of ASHM-YOLOv9
4.5. Comparison with Leading Mainstream Contemporary Models
4.6. Algorithm Validation
5. Discussion
5.1. Model Advantages
5.2. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Lima, J.M.; Welter, P.D.; Dos Santos, M.F.S.; Kavcic, W.; Costa, B.M.; Fagherazzi, A.F.; Nerbass, F.R.; Kretzschmar, A.A.; Rufato, L.; Baruzzi, G. Planting density interferes with strawberry production efficiency in Southern Brazil. Agronomy 2021, 11, 408. [Google Scholar] [CrossRef]
- Zhu, J.X. Discussion on different growth and development stages Fertilization pointsof strawberry. Tieling Acad. Agric. Sci. 2013, 7, 35–46. [Google Scholar]
- Zhang, Y.; Zhang, K.; Yang, L.; Zhang, D.; Cui, T.; Yu, Y.; Hui, L. Design and simulation experiment of ridge planting strawberry picking manipulator. Comput. Electron. Agric. 2023, 208, 10769. [Google Scholar] [CrossRef]
- Cao, L.L.; Chen, Y.R.; Jin, Q.G. Lightweight strawberry instance segmentation on low-power devices for picking robots. Electronics 2023, 12, 3145. [Google Scholar] [CrossRef]
- Kim, S.J.; Jeong, S.; Kim, H.; Jeong, S.; Yun, G.Y.; Park, K. Detecting ripeness of strawberry and coordinates of strawberry stalk using deep learning. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; pp. 454–458. [Google Scholar]
- Chai, J.J.K.; Xu, J.L.; O’Sullivan, C. Real-Time detection of strawberry ripeness using augmented reality and deep learning. Sensors 2023, 23, 7639. [Google Scholar] [CrossRef] [PubMed]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Attri, I.; Awasthi, L.K.; Sharma, T.P.; Rathee, P. A review of deep learning techniques used in agriculture. Ecol. Inform. 2023, 77, 102217. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Guindo, M.L.; Bakhshipour, A.; Fazayeli, H.; Li, X.; Yang, C. Advancing precision agriculture: The potential of deep learning for cereal plant head detection. Comput. Electron. Agric. 2023, 209, 107875. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2019, 9, 85–112. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Bi, X.L.; Hu, J.W.; Xiao, B.; Li, W.S.; Gao, X.B. IEMask R-CNN: Information-Enhanced Mask R-CNN. IEEE Trans. Big Data 2023, 9, 688–700. [Google Scholar] [CrossRef]
- Li, J.J.; Zhu, Z.F.; Liu, H.X.; Su, Y.R.; Deng, L.M. Strawberry R-CNN: Recognition and counting model of strawberry based on improved faster R-CNN. Ecol. Inform. 2023, 77, 102210. [Google Scholar] [CrossRef]
- Tang, C.; Chen, D.; Wang, X.; Ni, X.D.; Liu, Y.H.; Liu, Y.H.; Mao, X.; Wang, S.M. A fine recognition method of strawberry ripeness combining Mask R-CNN and region segmentation. Front. Plant Sci. 2023, 14, 1211830. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.P.; Shang, D.R.; Wang, S.H.; Dong, S.S. DF-SSD: An improved SSD object detection algorithm based on Densenet and feature fusion. IEEE Access 2020, 8, 24344–24357. [Google Scholar] [CrossRef]
- Jiang, P.Y.; Ergu, D.; Liu, F.Y.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Inf. Technol. Quant. Manag. (ITQM) 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Ridho, M.F.; Irwan. Strawberry fruit quality assessment for harvesting robot using SSD convolutional neural network. In Proceedings of the 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Semarang, Indonesia, 20–21 October 2021; pp. 157–162. [Google Scholar]
- Li, Y.D.; Xue, J.X.; Zhang, M.Y.; Yin, J.Y.; Liu, Y.; Qiao, X.D.; Zheng, D.C.; Li, Z.Z. YOLOv5-ASFF: A multistage strawberry detection algorithm based on improved YOLOv5. Agronomy 2023, 13, 1901. [Google Scholar] [CrossRef]
- Li, Y.; Ma, R.; Zhang, R.T.; Cheng, Y.F.; Dong, C.W. A tea buds counting method based on YOLOv5 and Kalman filter tracking algorithm. Plant Phenomics 2023, 5, 30. [Google Scholar] [CrossRef]
- Xu, J.; Yao, J.; Zhai, H.; Li, Q.M.; Xu, Q.; Xiang, Y.; Liu, Y.X.; Liu, T.H.; Ma, H.L.; Mao, Y.; et al. TrichomeYOLO: A neural network for automatic maize trichome counting. Plant Phenomics 2024, 5, 24. [Google Scholar] [CrossRef]
- Yang, S.Z.; Wang, W.; Gao, S.; Deng, Z.P. Strawberry ripeness detection based on YOLOv8 algorithm fused with LW-Swin Transformer. Comput. Electron. Agric. 2023, 215, 108360. [Google Scholar] [CrossRef]
- Wei, W.L.; Lin, B.Y.; Cao, J. Observation on phenological period and growth habit of strawberry variety. Fujian J. Agric. Sci. 1987, 2, 88–91. [Google Scholar]
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. YOLOv9: Learning what you want to learn using programmable gradient information. arxiv 2024, arXiv:2402.13616. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Yeh, I.H.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the 2019 CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 1571–1580. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Yeh, I.H. Designing network design strategies through gradient path analysis. J. Inf. Sci. Eng. 2023, 39, 975–995. [Google Scholar]
- Chen, Y.M.; Yuan, X.B.; Wu, R.Q.; Wang, J.B.; Hou, Q.B.; Cheng, M.M. YOLO-MS: Rethinking multi-scale representation learning for real-time object detection. arxiv 2023, arXiv:2308.05480. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Chen, W.Z.; Hao, L.Y.; Liu, H.Y.; Zhang, Y.Z. Real-time ship detection algorithm based on improved YOLOv8 network. In Proceedings of the 2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON), virtually, 8–10 December 2023; p. 10430529. [Google Scholar]
- Zhu, X.K.; Lyu, S.C.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Zhang, X.; Song, Y.Z.; Song, T.T.; Yang, D.G.; Ye, Y.C.; Zhou, J.; Zhang, L.M. AKConv: Convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters. arxiv 2023, arXiv:2311.11587. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E.H. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef]
- Xu, G.P.; Liao, W.T.; Zhang, X.; Li, C.; He, X.W.; Wu, X.L. Haar wavelet downsampling: A simple but effective downsampling module for semantic. Pattern Recognit. 2023, 143, 109819. [Google Scholar] [CrossRef]
- Siliang, M.; Yong, X. MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression. arxiv 2023, arXiv:2307.07662. [Google Scholar]
- Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, L. Microsoft COCO: Common Objects in Context. arxiv 2014, arXiv:1405.0312. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 2010 International Conference on Machine Learning, Qingdao, China, 11–14 July 2010. [Google Scholar]
- Elfwing, A.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 2018, 107, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.H.; Wang, P.; Liu, W.; Li, J.Z.; Ye, R.G.; Ren, D.W. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. AAAI Conf. Artif. Intell. 2020, 34, 12993–13000. [Google Scholar] [CrossRef]
- Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Gui, H.; Su, T.; Jiang, X.H.; Li, L.; Xiong, L.; Zhou, J.; Pang, Z.Y. FS-YOLOv9: A Frequency and Spatial Feature-Based YOLOv9 for Real-time Breast Cancer Detection. Acad. Radiol. 2024, 32, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.L.; Wang, Y.X. MAR-YOLOv9: A multi-dataset object detection method for agricultural fields based on YOLOv9. PLoS ONE 2024, 19, e0307643. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Zhang, X.C.; Sun, M.P.; Wang, G. GC-YOLOv9: Innovative smart city traffic monitoring solution. Alex. Eng. J. 2024, 106, 277–287. [Google Scholar] [CrossRef]
- Liu, R.M.; Su, W.H. APHS-YOLO: A Lightweight Model for Real-Time Detection and Classification of Stropharia Rugoso-Annulata. Foods 2024, 13, 1710. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.W.; Huang, J.; Yang, Y.; Nie, W.Y. KCFS-YOLOv5: A High-Precision Detection Method for Object Detection in Aerial Remote Sensing Images. Appl. Sci. 2023, 13, 649. [Google Scholar] [CrossRef]
- Kumaran, K.; Tharani, R.; Saranya, G.; Prashanthi, V.; Kumar, G.M.; Sagar, K.M. Enhanced Automatic Number Plate Recognition for High-Speed Vehicles: Leveraging YOLO and Haar Cascade. In Proceedings of the 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), Salem, India, 3–4 May 2024; p. 00145. [Google Scholar]
- Peng, J.Y.; Zhang, Y.N.; Xian, J.Y.; Wang, X.C.; Shi, Y.Y. YOLO Recognition Method for Tea Shoots Based on Polariser Filtering and LFAnet. Agronomy 2024, 14, 1800. [Google Scholar] [CrossRef]
- Cui, S.C.; Chen, W.; Xiong, W.W.; Xu, X.; Shi, X.Y.; Li, C.H. SiMultiF: A Remote Sensing Multimodal Semantic Segmentation Network With Adaptive Allocation of Modal Weights for Siamese Structures in Multiscene. IEEE T Geosci Remote Sens. 2025, 63, 4406817. [Google Scholar] [CrossRef]
Stage | Label | Description | Examples in Datasets |
---|---|---|---|
R4 | Flower | The main characteristics of the strawberry flowering stage are the white petals and the yellow stamens. | |
R5 | Growth | The color of the strawberry fruit was generally green. The basis for the judgment was that the colored area of the fruit in the image was less than 80% of the overall fruit-growing area. | |
R6 | Mature | The colored area in the image was greater than or equal to 80% of the overall fruit-growing area. |
Parameters | Value | Parameters | Value |
---|---|---|---|
epochs | 300 | workers | 4 |
batch-size | 4 | Patience | 100 |
imgsz | 640 | close-masaic | 0 |
evolve | 300 | optimizer | SGD |
Improvement Module | P/% | R/% | mAP 50/% | mAP 50–95/% | Parameters/mb | Model Size/mb | FLOPs/G | |||
---|---|---|---|---|---|---|---|---|---|---|
AKConv | SE | HWD ADown | MPDIoU | |||||||
× | × | × | × | 97.1 | 94.2 | 98.4 | 83.3 | 60.50 | 122.4 | 263.9 |
√ | × | × | × | 97.0 | 94.4 | 98.4 | 83.8 | 52.06 | 105.4 | 237.7 |
√ | √ | × | × | 97.2 | 95.6 | 98.6 | 85.6 | 52.09 | 105.6 | 237.8 |
√ | √ | √ | × | 97.6 | 96.9 | 99.0 | 90.5 | 58.29 | 115.19 | 253.3 |
√ | √ | √ | √ | 97.7 | 97.2 | 99.1 | 90.7 | 58.29 | 115.19 | 253.3 |
Flower Stage/% | ||||
---|---|---|---|---|
Models | Precision | Recall | mAP50 | mAP50-95 |
YOLOv5s | 97.5 | 97.6 | 98.1 | 79.9 |
YOLOv7 | 96.9 | 95.9 | 97.0 | 80.6 |
YOLOv8n | 97.2 | 94.0 | 98.4 | 85.7 |
YOLOv9c | 97.3 | 93.2 | 98.0 | 80.0 |
ASHM-YOLOv9 | 97.9 | 96.0 | 98.9 | 88.1 |
Growth Stage/% | ||||
---|---|---|---|---|
Models | Precision | Recall | mAP50 | mAP50-95 |
YOLOv5s | 95.9 | 96.2 | 98.8 | 83.7 |
YOLOv7 | 95.0 | 92.4 | 97.2 | 82.6 |
YOLOv8n | 95.7 | 94.1 | 97.6 | 86.3 |
YOLOv9c | 95.3 | 93.5 | 98.1 | 84.4 |
ASHM-YOLOv9 | 96.5 | 97.1 | 99.1 | 91.6 |
Mature Stage/% | ||||
---|---|---|---|---|
Models | Precision | Recall | mAP50 | mAP50-95 |
YOLOv5s | 98.5 | 98.0 | 99.4 | 84.9 |
YOLOv7 | 98.3 | 96.6 | 95.4 | 84.5 |
YOLOv8n | 98.6 | 97.0 | 99.1 | 88.5 |
YOLOv9c | 98.7 | 95.9 | 99.2 | 85.5 |
ASHM-YOLOv9 | 98.8 | 98.4 | 99.2 | 92.4 |
Whole Stage/% | ||||
---|---|---|---|---|
Models | Precision | Recall | mAP50 | mAP50-95 |
YOLOv5s | 97.3 | 97.3 | 98.8 | 82.8 |
YOLOv7 | 96.7 | 95.0 | 96.5 | 82.6 |
YOLOv8n | 97.2 | 95.1 | 98.4 | 85.7 |
YOLOv9c | 97.1 | 94.2 | 98.4 | 83.3 |
ASHM-YOLOv9 | 97.7 | 97.2 | 99.1 | 90.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, Y.; Bai, S.; Chen, W. ASHM-YOLOv9: A Detection Model for Strawberry in Greenhouses at Multiple Stages. Appl. Sci. 2025, 15, 8244. https://doi.org/10.3390/app15158244
Mo Y, Bai S, Chen W. ASHM-YOLOv9: A Detection Model for Strawberry in Greenhouses at Multiple Stages. Applied Sciences. 2025; 15(15):8244. https://doi.org/10.3390/app15158244
Chicago/Turabian StyleMo, Yan, Shaowei Bai, and Wei Chen. 2025. "ASHM-YOLOv9: A Detection Model for Strawberry in Greenhouses at Multiple Stages" Applied Sciences 15, no. 15: 8244. https://doi.org/10.3390/app15158244
APA StyleMo, Y., Bai, S., & Chen, W. (2025). ASHM-YOLOv9: A Detection Model for Strawberry in Greenhouses at Multiple Stages. Applied Sciences, 15(15), 8244. https://doi.org/10.3390/app15158244