Managing Redundancy in a Multiple-Robot Orienteering Problem for Equilibrium and Robustness
Abstract
1. Introduction
1.1. Related Works
1.2. Contributions
- Path Replanning for Workload Management. We introduce a Path Replanning stage, specifically designed to optimize the total workload of multi-robot systems, which we mathematically formalize as Problem 2.
- Load Balancing for Equitable Distribution. We introduce a workload balancing stage, which we formulate as Problem 3. The complete framework, comprising three sequential stages (Problem 1, Problem 2, and Problem 3), is termed RMOPWB. This framework has been empirically validated through numerical simulations, demonstrating its effectiveness in achieving balanced workload distribution.
- Efficient Algorithm for Complex Optimization. To address the complexity of this optimization problem, we propose an efficient algorithm that combines heuristic methods with Monte Carlo sampling. This approach dramatically reduces redundant operational paths while preserving essential redundancy to enhance system robustness.
2. Materials and Methods
2.1. Review of RMOP
2.2. Problem Formulation
2.2.1. Minimizing Total Workload
- (1)
- Budget constraint: .
- (2)
- TSP-variant walk: .
- (3)
- Reward preservation: .
2.2.2. Achieve Workload Balancing
2.3. Algorithm for RMOPWB
Algorithm 1: Solve RMOPWB |
Algorithm 2: Function PR (Path Replanning) |
Algorithm 3: and |
2.3.1. Path Replan
- Implementation of the CutCircle function. When a robot exhausts its traversal budget, it may return to a previously visited vertex. This revisit does not necessarily constitute redundancy—in some cases (e.g., example 3 in Figure 5), the robot may restart exploration in a new direction to access high-reward vertices. A cycle is identified when the current vertex connects back to a previously visited counterpart. Such a cycle is deemed redundant and removable only when all constituent vertices are revisits (as demonstrated in example 2 of Figure 5).
- Implementation of the BackWalks function. In crowded environments with multiple robots, walk redundancy primarily manifests as inter-robot path overlaps. The solution involves backtracking walks from terminal vertices to starting points (see examples 1, 4, and 5 in Figure 5). The algorithm sequentially checks each walk’s terminal vertex for presence in other robots’ walks (example 4). For implementation, we must verify whether removing overlapping terminal vertices preserves solution optimality relative to Problem 1.
2.3.2. Algorithm Analysis
3. Results
3.1. Simulation Setup
3.2. Simulation Instances
3.3. Simulation Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tutsoy, O.; Asadi, D.; Ahmadi, K.; Nabavi-Chashmi, S.Y.; Iqbal, J. Minimum Distance and Minimum Time Optimal Path Planning With Bioinspired Machine Learning Algorithms for Faulty Unmanned Air Vehicles. IEEE Trans. Intell. Transp. Syst. 2024, 25, 9069–9077. [Google Scholar] [CrossRef]
- Mohd Daud, S.M.S.; Mohd Yusof, M.Y.P.; Heo, C.C.; Khoo, L.S.; Chainchel Singh, M.K.; Mahmood, M.S.; Nawawi, H. Applications of drone in disaster management: A scoping review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Baeck, P.; Lewyckyj, N.; Beusen, B.; Horsten, W.; Pauly, K. Drone based near real-time human detection with geographic localization. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2019, 42, 49–53. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Premachandra, C.; Perea, C.J. Audio-Processing-Based Human Detection at Disaster Sites With Unmanned Aerial Vehicle. IEEE Access 2020, 8, 101398–101405. [Google Scholar] [CrossRef]
- Zohaib, M.; Pasha, S.M.; Javaid, N.; Iqbal, J. IBA: Intelligent Bug Algorithm—A Novel Strategy to Navigate Mobile Robots Autonomously. In Communication Technologies, Information Security and Sustainable Development: Third International Multi-topic Conference, IMTIC 2013, Jamshoro, Pakistan, 18–20 December 2013, Revised Selected Papers; Shaikh, F.K., Chowdhry, B.S., Zeadally, S., Hussain, D.M.A., Memon, A.A., Uqaili, M.A., Eds.; Springer: Cham, Switzerland, 2014; pp. 291–299. [Google Scholar]
- Wu, C.Y.; Lin, H.Y. Autonomous Mobile Robot Exploration in Unknown Indoor Environments Based on Rapidly-exploring Random Tree. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019; pp. 1345–1350. [Google Scholar] [CrossRef]
- Vansteenwegen, P.; Souffriau, W.; Oudheusden, D.V. The orienteering problem: A survey. Eur. J. Oper. Res. 2011, 209, 1–10. [Google Scholar] [CrossRef]
- Jorgensen, S.; Chen, R.H.; Milam, M.B.; Pavone, M. The Matroid Team Surviving Orienteers problem: Constrained routing of heterogeneous teams with risky traversal. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 5622–5629. [Google Scholar] [CrossRef]
- Thakur, D.; Likhachev, M.; Keller, J.; Kumar, V.; Dobrokhodov, V.; Jones, K.; Wurz, J.; Kaminer, I. Planning for opportunistic surveillance with multiple robots. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 5750–5757. [Google Scholar] [CrossRef]
- Prorok, A. Redundant Robot Assignment on Graphs with Uncertain Edge Costs. In Distributed Autonomous Robotic Systems: The 14th International Symposium, Boulder, CO, USA, 15–17 October 2018; Correll, N., Schwager, M., Otte, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 313–327. [Google Scholar]
- Guerrero-Bonilla, L.; Prorok, A.; Kumar, V. Formations for Resilient Robot Teams. IEEE Robot. Autom. Lett. 2017, 2, 841–848. [Google Scholar] [CrossRef]
- Prorok, A.; Sadler, B.M.; Egerstedt, M.; Kumar, V. Guest Editorial: Special section on “Foundations of resilience for networked robotic systems”. Auton. Robot. 2019, 43, 741. [Google Scholar] [CrossRef]
- Saulnier, K.; Saldaña, D.; Prorok, A.; Pappas, G.J.; Kumar, V. Resilient Flocking for Mobile Robot Teams. IEEE Robot. Autom. Lett. 2017, 2, 1039–1046. [Google Scholar] [CrossRef]
- Blum, A.; Chawla, S.; Karger, D.; Lane, T.; Meyerson, A.; Minkoff, M. Approximation algorithms for orienteering and discounted-reward TSP. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, Cambridge, MA, USA, 11–14 October 2003; pp. 46–55. [Google Scholar] [CrossRef]
- Shi, G.; Zhou, L.; Tokekar, P. Robust Multiple-Path Orienteering Problem: Securing Against Adversarial Attacks. IEEE Trans. Robot. 2023, 39, 2060–2077. [Google Scholar] [CrossRef]
- Assunção, L.; Santos, A.C. The Robust Steiner Team Orienteering Problem with Decreasing Priorities under budgeted uncertainty. Oper. Res. Perspect. 2025, 15, 100344. [Google Scholar] [CrossRef]
- Yu, Q.; Cheng, C.; Zhu, N. Robust Team Orienteering Problem with Decreasing Profits. INFORMS J. Comput. 2022, 34, 3215–3233. [Google Scholar] [CrossRef]
- Mansfield, A.; Manjanna, S.; Macharet, D.G.; Ani Hsieh, M. Multi-robot Scheduling for Environmental Monitoring as a Team Orienteering Problem. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 6398–6404. [Google Scholar] [CrossRef]
- Vansteenwegen, P.; Souffriau, W.; Vanden Berghe, G.; Van Oudheusden, D. Iterated local search for the team orienteering problem with time windows. Comput. Oper. Res. 2009, 36, 3281–3290. [Google Scholar] [CrossRef]
- Chekuri, C.; Pal, M. A recursive greedy algorithm for walks in directed graphs. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), Pittsburgh, PA, USA, 23–25 October 2005; pp. 245–253. [Google Scholar] [CrossRef]
- Singh, A.; Krause, A.; Guestrin, C.; Kaiser, W.J. Efficient informative sensing using multiple robots. J. Artif. Int. Res. 2009, 34, 707–755. [Google Scholar] [CrossRef]
- Atanasov, N.; Le Ny, J.; Daniilidis, K.; Pappas, G.J. Decentralized active information acquisition: Theory and application to multi-robot SLAM. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4775–4782. [Google Scholar] [CrossRef]
- Orlin, J.B.; Schulz, A.S.; Udwani, R. Robust monotone submodular function maximization. Math. Program. 2018, 172, 505–537. [Google Scholar] [CrossRef]
- Tzoumas, V.; Gatsis, K.; Jadbabaie, A.; Pappas, G.J. Resilient monotone submodular function maximization. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 12–15 December 2017; pp. 1362–1367. [Google Scholar] [CrossRef]
- Tzoumas, V.; Jadbabaie, A.; Pappas, G.J. Resilient Monotone Sequential Maximization. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 7261–7268. [Google Scholar] [CrossRef]
- Schlotfeldt, B.; Tzoumas, V.; Thakur, D.; Pappas, G.J. Resilient Active Information Gathering with Mobile Robots. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4309–4316. [Google Scholar] [CrossRef]
- Zhou, L.; Tzoumas, V.; Pappas, G.J.; Tokekar, P. Resilient Active Target Tracking With Multiple Robots. IEEE Robot. Autom. Lett. 2019, 4, 129–136. [Google Scholar] [CrossRef]
- Wurm, K.M.; Stachniss, C.; Burgard, W. Coordinated multi-robot exploration using a segmentation of the environment. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 1160–1165. [Google Scholar] [CrossRef]
- Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F. Coordinated multi-robot exploration. IEEE Trans. Robot. 2005, 21, 376–386. [Google Scholar] [CrossRef]
- Klodt, L.; Willert, V. Equitable workload partitioning for Multi-Robot exploration through pairwise optimization. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 2809–2816. [Google Scholar] [CrossRef]
- Zhang, H.; Vorobeychik, Y. Submodular optimization with routing constraints. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16), Phoenix, AZ, USA, 12–17 February 2016; AAAI Press: Cambridge, MA, USA, 2016; pp. 819–825. [Google Scholar]
Figure 7a | Figure 7(a2) | Figure 7(a3) | Figure 7(a4) | |
---|---|---|---|---|
Paths | Robot 0 | 6,19,6,17,0,16 | 6,19,6,17 | 6,19,6,17 |
Robot 1 | 20,8,13,1,13,1 | 20,8,13,1 | 20,8,13,1 | |
Robot 2 | 0,16,4,15,14,11 | 0,16 | 0,16,4,15 | |
Robot 3 | 13,8,20,5,20,3 | 13,8,20,5,20,3 | 13,8 | |
Robot 4 | 4,15,14,11,14,4 | 4,15,14,11 | 4,15,14,11 | |
Robot 5 | 16,4,15,14,11,14 | 16,4,15 | 16,4,15,14 | |
Indicators | Reward | 124 | 124 | 124 |
Budget | 131.47 | 73.54 | 69.51 | |
WBV | 23.93 | 21.69 | 13.73 |
Figure 7b | Figure 7(b2) | Figure 7(b3) | Figure 7(b4) | |
---|---|---|---|---|
Paths | Robot 0 | 7,20,11,3,9 | 7,20,11 | 7,20,11,3,9 |
Robot 1 | 4,16,14,0,13,15 | 4,16,14,0,13,15 | 4,16,14 | |
Robot 2 | 0,14,16,6,12,6 | 0,14,16,6 | 0,13,12 | |
Robot 3 | 5,21,8,15,12,6 | 5,21,8 | 5,21,8 | |
Robot 4 | 14,16,6,12,15,8 | 14,16,6,12,15,8 | 14,16,6,12,15 | |
Robot 5 | 3,9,3,11,20 | 3,9,3,11 | 3,20,17,5 | |
Indicators | Reward | 189 | 189 | 189 |
Budget | 135.86 | 93.78 | 82.38 | |
WBV | 23.82 | 22.87 | 20.85 |
Scene | UAV Num | Method | Reward | Budget | WBV | Runtime (ms) |
---|---|---|---|---|---|---|
City | 3 | RMOP | 121.8 | 72.4 | 24.3 | 51 |
RMOPWB1 | 121.8 | 66.5 | 23.4 | 192 | ||
RMOPWB2 | 121.8 | 64.8 | 23.6 | 76 | ||
City | 7 | RMOP | 228.5 | 125.3 | 26.1 | 95 |
RMOPWB1 | 228.5 | 95.9 | 22.9 | 403 | ||
RMOPWB2 | 228.5 | 91.4 | 23.0 | 151 | ||
City | 11 | RMOP | 298.7 | 187.6 | 25.6 | 176 |
RMOPWB1 | 298.7 | 122.5 | 21.1 | 783 | ||
RMOPWB2 | 298.7 | 128.0 | 21.9 | 212 | ||
Maze | 3 | RMOP | 82.1 | 56.7 | 28.3 | 42 |
RMOPWB1 | 82.1 | 50.1 | 27.9 | 141 | ||
RMOPWB2 | 82.1 | 51.8 | 27.1 | 59 | ||
Maze | 7 | RMOP | 155.6 | 79.6 | 30.8 | 78 |
RMOPWB1 | 155.6 | 64.2 | 26.8 | 286 | ||
RMOPWB2 | 155.6 | 62.5 | 25.6 | 109 | ||
Maze | 11 | RMOP | 218.9 | 116.8 | 32.7 | 116 |
RMOPWB1 | 218.9 | 72.2 | 25.8 | 529 | ||
RMOPWB2 | 218.9 | 70.9 | 27.3 | 161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, Z.; Jiang, T.; Leng, W.; Lei, Y. Managing Redundancy in a Multiple-Robot Orienteering Problem for Equilibrium and Robustness. Appl. Sci. 2025, 15, 8217. https://doi.org/10.3390/app15158217
Mi Z, Jiang T, Leng W, Lei Y. Managing Redundancy in a Multiple-Robot Orienteering Problem for Equilibrium and Robustness. Applied Sciences. 2025; 15(15):8217. https://doi.org/10.3390/app15158217
Chicago/Turabian StyleMi, Zengzhen, Tong Jiang, Wenwen Leng, and Yuchengzhi Lei. 2025. "Managing Redundancy in a Multiple-Robot Orienteering Problem for Equilibrium and Robustness" Applied Sciences 15, no. 15: 8217. https://doi.org/10.3390/app15158217
APA StyleMi, Z., Jiang, T., Leng, W., & Lei, Y. (2025). Managing Redundancy in a Multiple-Robot Orienteering Problem for Equilibrium and Robustness. Applied Sciences, 15(15), 8217. https://doi.org/10.3390/app15158217