Toward Quieter Dental Devices: Transient CFD Simulation of Airflow and Noise in Air Turbine Handpieces
Abstract
1. Introduction
2. Materials and Methods
2.1. Physical Model of an ATH for Numerical Calculations
2.2. Numerical Simulation Method
2.2.1. Governing Equation
2.2.2. Numerical Method
2.2.3. Computational Setting
2.3. Experimental Setting
3. Results
3.1. Flow Field
3.2. Pressure Fluctuation
3.3. CFD Model Validation by Experimental Comparisons and Time Domain Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Appendix A
Appendix A.1. Rotation Framework for the Immersed Boundary
Appendix A.2. Time Stepping Scheme
Appendix A.3. Numerical Scheme for the Flux Term
References
- Yamada, T.; Nozaki, K.; Hayashi, M.; Kuwano, S. Sound environment during dental treatment in relation to COVID-19 pandemic. Acoustics 2023, 5, 987–998. [Google Scholar] [CrossRef]
- Duker, L.I.S.; Grager, M.; Giffin, W.; Hikita, N.; Polido, J.C. The relationship between dental fear and anxiety, general anxiety/fear, sensory over-responsivity and oral health behaviors and outcomes: A conceptual model. Int. J. Environ. Res. Public Health 2022, 19, 2380. [Google Scholar] [CrossRef]
- Rajeev, A.; Patthi, B.; Janakiram, C.; Singla, A.; Malhi, R.; Kumari, M. Influence of the previous dental visit experience in seeking dental care among young adults. J. Family Med. Prim. Care 2020, 9, 609–613. [Google Scholar] [CrossRef] [PubMed]
- ISO 14457:2017; Dentistry—Handpieces and motors. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66429.html (accessed on 8 July 2025).
- Dyson, J.E.; Darvell, B.W. Dental air turbine handpiece performance testing. Aust. Dent. J. Aust. Dent. J. 1995, 40, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Dyson, J.E.; Darvell, B.W. The development of the dental high-speed air turbine handpiece. Part 1 Aust. Dent. J. 1993, 38, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.R.; Du, W.; Zhou, X.D.; Yu, H.Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral. Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Eshleman, J.R.; Sarrett, D.C. How the development of the high-speed turbine handpiece changed the practice of dentistry. J. Am. Dent. Assoc. 2013, 144, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Brockhurst, P.J.; Shams, R. Dynamic measurement of the torque-speed characteristics of dental high speed air turbine handpieces. Aust. Dent. J. 1994, 39, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Kuwano, S.; Ebisu, S.; Hayashi, M. Effect of processing of dental drill noise on subjective impression. Appl. Acoust. 2021, 177, 107895. [Google Scholar] [CrossRef]
- Yamada, T.; Kuwano, S.; Ebisu, S.; Hayashi, M. Effect of age-related extended high frequency hearing loss on the subjective impressions of dental drill noise. Sci. Rep. 2024, 14, 15655. [Google Scholar] [CrossRef] [PubMed]
- Nishi, Y.; Fushimi, H.; Shimomura, K.; Hasegawa, T. Performance and internal flow of a dental air turbine handpiece. Int. J. Rotating Mach. 2018, 2018, 1826489. [Google Scholar] [CrossRef]
- Juraeva, M.; Park, B.H.; Ryu, K.J.; Song, D.J. Designing high-speed dental air-turbine handpiece by using a computational approach. Int. J. Precis. Eng. Manuf. 2017, 18, 1403–1407. [Google Scholar] [CrossRef]
- Beigzadeh, B.; Derakhshan, S.; Shamami, D.Z. A numerical study on performance of dental air turbine handpieces. Mechanika 2017, 23, 750–755. [Google Scholar] [CrossRef]
- Dyson, J.E.; Darvell, B.W. The development of the dental high-speed air turbine handpiece. Part 2 Aust. Dent. J. 1993, 38, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Micro CT Scanner. Phoenix Micro CT Scanner|3D CT Metrology Scanner. Available online: https://www.bakerhughes.com/waygate-technologies/industrial-radiography-and-ct/phoenix-advanced-industrial-xray-and-ct/phoenix-vtomex-m-high-speed-3d-ct-scanner (accessed on 7 July 2025).
- Nakahashi, K.; Kim, L.S. Building-cube method for large-scale, high resolution flow computations. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004. [Google Scholar] [CrossRef]
- Ishida, T.; Takahashi, S.; Nakahashi, K. Efficient and robust Cartesian mesh generation for building-cube method. J. Comput. Sci. Technol. 2008, 2, 435–446. [Google Scholar] [CrossRef]
- Nakahashi, K. Building-cube method for flow problems with broadband characteristic length. In Proceedings of the Computational Fluid Dynamics 2002, Sydney, Australia, 15–19 July 2002. [Google Scholar] [CrossRef]
- Li, C.G.; Bale, R.; Wang, W.; Tsubokura, M. A sharp interface immersed boundary method for thin-walled geometries in viscous compressible flows. Int. J. Mech. Sci. 2023, 253, 108401. [Google Scholar] [CrossRef]
- Lu, H.; Li, C.; Tsubokura, M. Adaptively switched time stepping scheme for direct aeroacoustic computations. AIP Adv. 2022, 12, 035340. [Google Scholar] [CrossRef]
- Rieper, F. A low-Mach number fix for Roe’s approximate Riemann solver. J. Comput. Phys. 2011, 230, 5263–5287. [Google Scholar] [CrossRef]
- Dyson, J.E.; Darvell, B.W. Torque, power and efficiency characterization of dental air turbine handpieces. J. Dent. 1999, 27, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Dyson, J.E.; Darvell, B.W. Flow and free running speed characterization of dental air turbine handpieces. J. Dent. 1999, 27, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Eitner, S.; Wichmann, M.; Paulsen, A.; Holst, S. Dental anxiety—An epidemiological study on its clinical correlation and effects on oral health. J. Oral. Rehabil. 2006, 33, 588–593. [Google Scholar] [CrossRef] [PubMed]
- McGrath, C.; Bedi, R. The association between dental anxiety and oral health-related quality of life in Britain. Community Dent. Oral. Epidemiol. 2004, 32, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Jameson, A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In Proceedings of the 10th Computational Fluid Dynamics Conference, Honolulu, HI, USA, 24–26 May 1991. [Google Scholar] [CrossRef]
- Yoon, S.; Jameson, A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. J. AIAA 2012, 26, 1025–1026. [Google Scholar] [CrossRef]
- Lian, C.; Xia, G.; Merkle, C.L. Solution-limited time stepping to enhance reliability in CFD applications. J. Comput. Phys. 2009, 228, 4836–4857. [Google Scholar] [CrossRef]
- Li, X.S.; Gu, C.W. Mechanism of Roe-type schemes for all-speed flows and its application. Comput. Fluids 2013, 86, 56–70. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, C. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process. J. Comput. Phys. 2005, 208, 570–615. [Google Scholar] [CrossRef]
- Bui, T.T. A parallel, finite-volume algorithm for large-eddy simulation of turbulent flows. Comput. Fluids 2000, 29, 877–915. [Google Scholar] [CrossRef]
Equation Term | Algorithm | Numerical Method |
---|---|---|
Time advancement | Implicit | Adaptively switched time stepping |
Convective terms | Roe scheme | Low Mach fix Roe [22] |
Reconstruction | MUSCL | 5th order (without limiter) |
Viscous terms | Central difference | 2nd order |
Category | Parameter | Value |
---|---|---|
Geometry | Body diameter | 9 mm |
Length of the body | 13.0 mm | |
Impeller diameter | 8.1 mm | |
Length of the rotor | 10.7 mm | |
Stage 1 impeller blade count | 18 | |
Stage 1 blade length (axial) | 2.0 mm | |
Stage 1 blade height (radial) | 0.6 mm | |
Stage 2 impeller blade count | 18 | |
Stage 2 blade length (axial) | 1.2 mm | |
Stage 2 blade height (radial) | 0.7 mm | |
Numerical setup | Atmospheric pressure P0 | 101,300.0 Pa |
Inlet pressure | 3.06 atm | |
Outlet pressure | 1.15 atm | |
Rotational speed | 320,000 rpm | |
Velocity of the air turbine at impeller tip | 135 m/s | |
Computational time step (development phase) | 4 × 10−6 s flow under development | |
Computational time step (after steady state) | 2 × 10−7 s after quasi steady state | |
Mesh | Finest cell size | 0.025 mm |
Cell number | 104,767,488 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, T.; Nozaki, K.; Tsubokura, M.; Hayashi, M.; Li, C.-G. Toward Quieter Dental Devices: Transient CFD Simulation of Airflow and Noise in Air Turbine Handpieces. Appl. Sci. 2025, 15, 8187. https://doi.org/10.3390/app15158187
Yamada T, Nozaki K, Tsubokura M, Hayashi M, Li C-G. Toward Quieter Dental Devices: Transient CFD Simulation of Airflow and Noise in Air Turbine Handpieces. Applied Sciences. 2025; 15(15):8187. https://doi.org/10.3390/app15158187
Chicago/Turabian StyleYamada, Tomomi, Kazunori Nozaki, Makoto Tsubokura, Mikako Hayashi, and Chung-Gang Li. 2025. "Toward Quieter Dental Devices: Transient CFD Simulation of Airflow and Noise in Air Turbine Handpieces" Applied Sciences 15, no. 15: 8187. https://doi.org/10.3390/app15158187
APA StyleYamada, T., Nozaki, K., Tsubokura, M., Hayashi, M., & Li, C.-G. (2025). Toward Quieter Dental Devices: Transient CFD Simulation of Airflow and Noise in Air Turbine Handpieces. Applied Sciences, 15(15), 8187. https://doi.org/10.3390/app15158187