Research Progress and Future Prospects of Key Technologies for Dryland Transplanters
Abstract
1. Introduction
2. Classification of Transplanters
2.1. Handheld Transplanter
2.2. Semi-Automatic Transplanter
2.2.1. Duckbilled Semi-Automatic Transplanter
2.2.2. Chain-Clip Semi-Automatic Transplanter
2.2.3. Guide-Tube Semi-Automatic Transplanter
2.2.4. Flexible-Disc Semi-Automatic Transplanter
2.3. Fully Automatic Transplanter
2.3.1. Fully Automatic Plug-Seedling Transplanter
2.3.2. Fully Automatic Carpet-Seedling Transplanter
3. Research Status of Seedling Picking Mechanism
3.1. Ejector Type
3.2. Gripper Type
3.3. Free-Fall Type
3.4. Discussion on the Current Situation of the Seedling Picking Mechanism
4. Questions and Suggestions
4.1. Existing Challenges
4.2. Suggestions
5. Future Development Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Li, X.; Yan, H.; Ullah, I.; Zuo, Z.; Li, L.; Yu, J. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 2020, 241, 106263. [Google Scholar] [CrossRef]
- Ma, G.; Shi, Q.; Wu, Y.; Liu, Y.; Han, L.; Hu, J.; Mao, H.; Zuo, Z. Effects of biochar on the growth and physiological and mechanical properties of cucumber plug seedlings before and after transplanting. Agriculture 2024, 14, 2012. [Google Scholar] [CrossRef]
- Ma, G.; Chen, X.; Liu, Y.; Hu, J.; Han, L.; Mao, H. Effects of compound biochar substrate coupled with water and nitrogen on the growth of cucumber plug seedlings. Agronomy 2022, 12, 2855. [Google Scholar] [CrossRef]
- Han, L.; Mo, M.; Gao, Y.; Ma, H.; Xiang, D.; Ma, G.; Mao, H. Effects of new compounds into substrates on seedling qualities for efficient transplanting. Agronomy 2022, 12, 983. [Google Scholar] [CrossRef]
- Ma, G.; Mao, H.; Bu, Q.; Han, L.; Shabbir, A.; Gao, F. Effect of compound biochar substrate on the root growth of cucumber plug seedlings. Agronomy 2020, 10, 1080. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J.; Fu, W. Growth, photosynthesis, and nutrient uptake at different light intensities and temperatures in lettuce. HortScience 2019, 54, 1925–1933. [Google Scholar] [CrossRef]
- Zhao, S.; Lei, X.; Liu, J.; Jin, Y.; Bai, Z.; Yi, Z.; Liu, J. Transient multi-indicator detection for seedling sorting in high-speed transplanting based on a lightweight model. Comput. Electron. Agric. 2023, 211, 107996. [Google Scholar] [CrossRef]
- Han, Z.; Yan, H.; Chen, K.; He, Y. Application status and prospect of planting depth profiling technology for transplanting machinery. Agric. Eng. 2018, 8, 1–7. [Google Scholar]
- Yu, X.; Zhao, Y.; Chen, B.; Zhou, M.; Zhang, H.; Zhang, Z. Current situation and prospect of transplanter. Trans. Chin. Soc. Agric. Mach. 2014, 45, 44–53. (In Chinese) [Google Scholar]
- Yao, M.; Hu, J.; Liu, W.; Shi, J.; Jin, Y.; Lv, J.; Sun, Z.; Wang, C. Precise servo-control system of a dual-axis positioning tray conveying device for automatic transplanting machine. Agriculture 2024, 14, 1431. [Google Scholar] [CrossRef]
- Bankole, O.O.; Danso, F.; Zhang, N.; Zhang, J.; Zhang, K.; Dong, W.; Lu, C.; Zhang, X.; Li, G.; Raheem, A.; et al. Integrated effects of straw incorporation and n application on rice yield and greenhouse gas emissions in three rice-based cropping systems. Agronomy 2024, 14, 490. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J. Effects of light intensity and temperature on the photosynthesis characteristics and yield of lettuce. Horticulturae 2022, 8, 178. [Google Scholar] [CrossRef]
- Yan, H.; Ma, J.; Zhang, J.; Wang, G.; Zhang, C.; Akhlaq, M.; Huang, S.; Yu, J. Effects of film mulching on the physiological and morphological parameters and yield of cucumber under insufficient drip irrigation. Irrig. Drain. 2022, 71, 897–911. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, H.; Zhang, W.; Hanan, J.S.; Ge, D.; Cao, J.; Xia, J.; Xuan, S.; Liang, W.; Zhang, L.; et al. An aboveground biomass partitioning coefficient model for rapeseed (Brassica napus L.). Field Crops Res. 2020, 259, 107966. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.; Jin, Y.; Bai, Z.; Liu, J.; Zhou, X. Design and testing of an intelligent multi-functional seedling transplanting system. Agronomy 2022, 12, 2683. [Google Scholar] [CrossRef]
- Gavric, T.; Omerbegovic, O. Effect of transplanting and direct sowing on productive properties and earliness of sweet corn. Chil. J. Agric. Res. 2021, 81, 39–45. [Google Scholar] [CrossRef]
- Huang, M.; Tang, Q.; Song, Z.; Liu, H.; Wu, Y.; Zhu, T. Development status and trends of the development of seedling pick-up mechanism of transplanter in dry land. J. Intell. Agric. Mech. 2023, 4, 57–64. [Google Scholar]
- Khadatkar, A.; Magar, A.P.; Sawant, C. Need for automation in vegetable transplanter for Indian agriculture. Indian Farming 2023, 73, 31–34. [Google Scholar]
- Cheng, B.; Wu, H.; Zhu, H.; Liang, J.; Miao, Y.; Cui, Y.; Song, W. Current status and analysis of key technologies in automatic transplanters for vegetables in China. Agriculture 2024, 14, 2168. [Google Scholar] [CrossRef]
- Habineza, E.; Reza, N.; Bicamumakuba, E.; Haque, A.; Park, S.-H.; Lee, D.-H.; Chung, S.-O.; Lee, Y.-S. Pepper transplanting mechanisms and kinematic simulation analysis: A review. Precis. Agric. Sci. Technol. 2024, 6, 17–32. [Google Scholar] [CrossRef]
- Karayel, D.; Çanakci, M.; Topakci, M.; Aktaş, A.; Aytem, H.; Kriauciuniene, Z. Technical evaluation of transplanters’ performance for potted seedlings. Turk. J. Agric. For. 2023, 47, 116–123. [Google Scholar] [CrossRef]
- Miah, S.; Rahman, M.; Hoque, M.A.; Ibrahim, S.M.; Sultan, M.; Shamshiri, R.R.; Ucgul, M.; Hasan, M.; Barna, T.N. Design and evaluation of a power tiller vegetable seedling transplanter with dibbler and furrow type. Heliyon 2023, 9, e17827. [Google Scholar] [CrossRef] [PubMed]
- Mitrache, P.; Saracin, I.; Ciuperca, R. Comparative research on realization of agrotehnical indices by seedling planting machines with bucket dispensers. In Proceedings of the 19th International Scientific Conference Engineering for Rural Development, Jelgava, Łotwa, 20–22 May 2020. [Google Scholar] [CrossRef]
- Wei, L.; Jianping, H.; Jiaxin, L.; Rencai, Y.; Tengfei, Z.; Mengjiao, Y.; Jing, L. Method for the navigation line recognition of the ridge without crops via machine vision. Int. J. Agric. Biol. Eng. 2024, 17, 230–239. [Google Scholar] [CrossRef]
- Sun, J.; He, X.; Ge, X.; Wu, X.; Shen, J.; Song, Y. Detection of key organs in tomato based on deep migration learning in a complex background. Agriculture 2018, 8, 196. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Shi, J.; Zhou, C.; Hu, J. SN-CNN: A lightweight and accurate line extraction algorithm for seedling navigation in ridge-planted vegetables. Agriculture 2024, 14, 1446. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Li, M.; Shang, Z. Dynamic measurement method for steering wheel angle of autonomous agricultural vehicles. Agriculture 2024, 14, 1602. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Liu, Y.; Zhang, T.; Yan, M.; Chen, J.; Zhou, C.; Hu, J.; Chen, X. An ultrasonic ridge-tracking method based on limiter sliding window filter and fuzzy pure pursuit control for ridge transplanter. Agriculture 2024, 14, 1713. [Google Scholar] [CrossRef]
- Cui, B.; Cui, X.; Wei, X.; Zhu, Y.; Ma, Z.; Zhao, Y.; Liu, Y. Design and testing of a tractor automatic navigation system based on dynamic path search and a fuzzy stanley model. Agriculture 2024, 14, 2136. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Yao, M.; Shi, J.; Hu, J. Seedling-yolo: High-efficiency target detection algorithm for field broccoli seedling transplanting quality based on YOLOV7-tiny. Agronomy 2024, 14, 931. [Google Scholar] [CrossRef]
- Ji, X.; Wei, X.; Wang, A.; Cui, B.; Song, Q. A novel composite adaptive terminal sliding mode controller for farm vehicles lateral path tracking control. Nonlinear Dyn. 2022, 110, 2415–2428. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Ding, S.; Xia, J.; Xing, G. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors. Biosyst. Eng. 2024, 246, 96–109. [Google Scholar] [CrossRef]
- Syed, T.; Lakhiar, I.; Chandio, F.A. Machine vision technology in agriculture: A review on the automatic seedling transplanters. Int. J. Multidiscip. Res. Dev. 2019, 6, 79–88. [Google Scholar]
- Min, Y.-B.; Han, C.-W.; Kweon, G.-Y. Study on optimum operating conditions of a pushing unit for onion plug seedlings. J. Agric. Life Sci. 2014, 48, 435–445. [Google Scholar] [CrossRef]
- Dang, Y.; Jin, X.; Li, H.; Wang, J.; Lu, Y.; Ding, B.; Li, X. Design of single-degree-of-freedom four-bar seedling-taking and throwing manipulator. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2019, 35, 39–47, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, J.; Yu, G.; Tong, Z.; Hua, Y. Design and experimental study of a planetary gearing mechanism based on twice unequal amplitude transmission ratio. Int. J. Agric. Biol. Eng. 2022, 14, 155–163. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.; Sun, L.; Zhao, X.; Ye, B. Advancement of mechanized transplanting technology and equipments for field crops. Trans. Chin. Soc. Agric. Mach. 2022, 53, 1–20, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hu, J.; Pan, J.; Chen, F.; Yue, R.; Yao, M.; Li, J. Simulation optimization and experiment of finger-clamping seedling picking claw based on EDEM-Recurdyn. Trans. Chin. Soc. Agric. Mach. 2022, 53, 75–85, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, G.; Wang, J.; Li, S.; Lu, L.; Dong, Z. Research status and development trend of upland crops mechanized transplanting key technologies. J. Chin. Agric. Mech. 2022, 43, 22–31, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wu, J.; Yu, W.; Zhang, M.; Wu, C.; Jiang, L.; Tang, Q. Design and test of 2ZY-6 rapeseed carpet seedling transplanter. Trans. Chin. Soc. Agric. Mach. 2020, 51, 95–102, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jiang, L.; Wu, C.; Tang, Q.; Zhang, M.; Wang, G.; Wu, J. Critical equation of seedling block falling off in transplanting process and the optimization experiment of rape blanket seedling transplanter. Int. J. Agric. Biol. Eng. 2019, 12, 87–96. [Google Scholar] [CrossRef]
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences. A Method for Cultivating Carpet Seedlings of Chili Peppers. CN202411499743.8, 27 December 2024. [Google Scholar]
- Yu, Y.; Zhao, X.; Zhang, P.; Zhang, B. Optimization Design and Experiment of Transplantation Mechanism for Vegetable Blanket Seedlings. J. Agric. Mech. Res. 2024, 1–10. Available online: http://kns.cnki.net/kcms/detail/23.1233.S.20250218.1713.030.html (accessed on 14 July 2025).
- Liu, D. Optimization Design and Experimental Study on Integrated Transplanting Mechanism of Take and Plant For Vegetable Blanket Seedlings. Master’s Thesis, Zhejiang Sci-Tech University, Hangzhou, China, 2022. [Google Scholar]
- Jo, J.S.; Okyere, F.G.; Jo, J.M.; Kim, H.T. A Study on Improving the Performance of the Planting Device of a Vegetable Transplanter. J. Biosyst. Eng. 2018, 43, 202–210. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Zhang, H.; Guo, X. Design and Simulate on the Staggered Chain Clip Type Pepper Transplanting Machine. Mach. Des. Manuf. 2018, 4, 68–71. [Google Scholar] [CrossRef]
- Qin, W.; Yu, Y.; Lai, Q.; Zhan, C.; Yuan, H.; Zhang, H. Parameter optimization experiment of seedling guiding tube transplanting machine of Panax notoginseng seedling. Acta Agric. Zhejiangensis 2022, 34, 614–625. [Google Scholar] [CrossRef]
- Li, H. Design and Experiment of Planting Mechanism of Tobacco Transplanter Based on PLC Control. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2021. [Google Scholar]
- Ji, D.; Liu, L.; Zeng, F.; Zhang, G.; Liu, Y.; Diao, H.; Tian, S.; Zhao, Z. Design and Experimental Study of a Traction Double-Row Automatic Transplanter for Solanum Lycopersicum Seedlings. Horticulturae 2024, 10, 692. [Google Scholar] [CrossRef]
- Habineza, E.; Ali, M.; Reza, N.; Woo, J.-K.; Chung, S.-O.; Hou, Y. Vegetable transplanters and kinematic analysis of major mechanisms: A review. Korean J. Agric. Sci. 2023, 50, 113–129. [Google Scholar] [CrossRef]
- Sharma, A.; Khar, S. Current developments in vegetable transplanters in developing countries: A comprehensive review. Int. J. Veg. Sci. 2022, 28, 417–440. [Google Scholar] [CrossRef]
- Wang, Q. Optimization Design and Simulation Analysis of Transplanting Mechanism of Pascal Gear Pepper Pot Seedling. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2017. [Google Scholar]
- Lv, Z.; Shan, Y.; Wang, J.; Zhao, Y. Research progress of vegetable transplanting machine and prospects of seed-ling-picking machinery of transplanter. J. Chin. Agric. Mech. 2017, 38, 30–34, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, B. Research on Automatic Seedling Supply Device of Pepper Seedling Transplanting Machine. Ph.D. Thesis, Hunan Agricultural University, Changsha, China, 2023. [Google Scholar]
- Lawrence, M.J.; Buckmaster, D.R.; Lamont, W.J., Jr. A pneumatic dibbling machine for plastic mulch. Appl. Eng. Agric. 2007, 23, 419–424. [Google Scholar] [CrossRef]
- Sharma, A.; Khar, S. Conceptualization and development of a semi-automatic vegetable transplanter prototype for small landholdings. Heliyon 2024, 10, e31540. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Liu, Y.; Xuan, G.; Hu, Z.; Han, X.; Wang, Y.; Chen, B.; Wang, W. Design and Test of Multifunctional Vegetable Transplanting Machine. IFAC-PapersOnLine 2019, 52, 92–97. [Google Scholar] [CrossRef]
- Yu, G.; Liao, Z.; Xu, L.; Zhao, P.; Wu, C. Optimization Design and Test of Large Spacing Planetary Gear Train for Vegetable Pot-seedling Planting Mechanism. Trans. Chin. Soc. Agric. Mach. 2015, 46, 38–44, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xin, L.; Sun, M.; Li, Z.; Zhu, X.; Feng, Y.; Li, J. Optimization Design and Experiment of High Catching and Low Planting Type Differential Variable Attitude Planetary Gear System Planting Mechanism. Trans. Chin. Soc. Agric. Mach. 2024, 55, 161–169, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, X.; Yin, W.; Zhang, M. Optimum design and experiment of crank-rocker and parallelogram linkage mechanism of pot seedling transplanter. J. Mach. Des. 2015, 32, 65–70, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xu, G.; Liu, H.; Jian, S.; Shi, S.; He, T. Design and Test of Transplanting Mechanism on Mulch-film of Salvia miltiorrhiza Based on Five-bar Mechanism. Trans. Chin. Soc. Agric. Mach. 2018, 49, 55–65, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xu, G.; Fang, H.; Song, Y.; Du, W.; Wang, N. Performance Improvement of a Geared Five-Bar Transplanting Mechanism for Salvia miltiorrhiza by Orthogonal Design Based on an Interactive Human–Computer Auxiliary Interface. Sustainability 2023, 15, 2219. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Ding, Y.; Yu, L. Six-bar linkage design for transplanter and motion simulation analysis. J. Chin. Agric. Mech. 2020, 41, 26–31, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Mao, P.; Li, J.; Zhang, S.; Xu, R. Kinematic analysis of seven—Rod planting mechanism of seedling transplanter—Based on MATLAB. J. Agric. Mech. Res. 2013, 35, 59–62. [Google Scholar] [CrossRef]
- Yin, W.; Liu, H.; Hu, F.; Yan, H.; Guo, D.; Wu, Y. Optmization design and experiment on eight-linkage planting mechanism of dryland transplanter. Trans. Chin. Soc. Agric. Mach. 2020, 51, 51–60, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, L. Design and Experiment of Chainclip-Type Pineapple Seedling Transplanting Mechanism Based on Self-Balancing. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2023. [Google Scholar] [CrossRef]
- Chen, S. Design and Experimental Research of Chain Clip Type Pepper Pot Seedling Transplanter. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2022. [Google Scholar] [CrossRef]
- Javidan, S.M.; Mohammadzamani, D. Design, construction and evaluation of semi-automatic vegetable transplanter with conical distributor cup. SN Appl. Sci. 2019, 1, 999. [Google Scholar] [CrossRef]
- Zhang, K. Design of Semi-Automatic Transplanter for Sugarcane Seedling and Its Key Components. Master’s Thesis, Jiangsu University, Zhengjiang, China, 2020. [Google Scholar]
- Yan, Y.; Wang, S. Design of the tobacco seedling transplanting machine. J. Qingdao Agric. Univ. (Nat. Sci.) 2018, 34, 147–151. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; Jiang, C. Design and test of 2ZS-3 flexible disc cabbage water supplement transplanter. Agric. Eng. 2019, 9, 10–14. [Google Scholar]
- Zhang, J.; Li, T.; Niu, Z.; Li, G.; Wang, H.; Hou, J. Design and research of semi-automatic combined green onion transplanting machine. J. Agric. Mech. Res. 2020, 42, 86–90. [Google Scholar] [CrossRef]
- Hua, Z. Design and Simulation of Flexible Disc Transplanting Machine for Cranberry Seedling. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2017. [Google Scholar]
- Liu, J.; Qiu, B.; Tian, S. Research progress on vegetable transplanters. China Agric. Mach. Equip. 2023, 3, 48–55. [Google Scholar]
- Khadatkar, A.; Pandirwar, A.P.; Paradkar, V. Design, development and application of a compact robotic transplanter with automatic seedling picking mechanism for plug-type seedlings. Sci. Rep. 2023, 13, 1883. [Google Scholar] [CrossRef] [PubMed]
- Magar, A.P.; Nandede, B.M.; Khadatkar, A.; Sawant, C.P.; Pandirwar, A.P.; Chaudhary, V.P. Optimization, development and evaluation of vegetable seedlings transplanter using inclined magazine-type metering device for cylindrical paper pot seedlings. Agric. Res. 2024. [Google Scholar] [CrossRef]
- Khadatkar, A.; Mathur, S.M.; Dubey, K.; Magar, A.P. Automatic ejection of plug-type seedlings using embedded system for use in automatic vegetable transplanter. J. Sci. Ind. Res. 2021, 80, 1042–1048. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development status and trend of agricultural robot technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Li, N.; Faheem, M.; Zhou, T.; Cai, W.; Zhao, M.; Zhu, X.; Li, P. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation. Appl. Eng. Agric. 2019, 35, 1067–1078. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, J.; Tian, J.; Duan, D.; Zhang, Y.; Tan, Y.; Yuan, T.; Li, X. Design of a traction double-row fully automatic transplanter for vegetable plug seedlings. Comput. Electron. Agric. 2021, 182, 106017. [Google Scholar] [CrossRef]
- Shi, J.; Hu, J.; Li, J.; Liu, W.; Yue, R.; Zhang, T.; Yao, M. Design and experiment of planting mechanism of automatic transplanter for densely planted vegetables. Agriculture 2024, 14, 1357. [Google Scholar] [CrossRef]
- Yao, H. Design and Experiment of Flexible Disc Automatic Transplanting Machine for Scallion. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2022. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Q.; Zhang, T.; Liu, H.; Mu, G. Design and control of a side dense transplanting machine for sweet potato seedlings on mulch film. Comput. Electron. Agric. 2024, 224, 109193. [Google Scholar] [CrossRef]
- Ishizaki, S.; Hirai, H.; Sakagaito, T.; Takeyama, T.; Oido, N.; Tamura, T.; Mizutani, M.; Watanabe, Y.; Umeda, M. Development of a transplanter-based transplanter for vegetable seedlings cultured in a cuttable nursery mat. J. Agric. Eng. 2024, 55. [Google Scholar] [CrossRef]
- Tang, Q. Research on Key Technology of Rape Blanket Seedling Combined Transplanter. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2024. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, J.; Yuan, T.; Tan, Y. Current situation and analysis of automatic pick-up technology for vegetable plug seedlings. J. China Agric. Univ. 2021, 26, 128–142. [Google Scholar] [CrossRef]
- Chen, J.; Cui, W.; Liu, Y.; Liu, L.; Liu, F.; Kong, D.; Zhang, X. Design and experiment of ejection mechanism for transplanter seedling picking device. Agric. Eng. 2023, 13, 82–87. [Google Scholar]
- Peng, Z.; Yang, F.; Li, Y.; Li, X.; Li, B.; Xu, G. Design and Testing of a Whole-Row Top-Loosening Stem-Clamping Seedling Extraction Device for Hole Tray Seedlings. Agriculture 2025, 15, 165. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, G.; Fu, J.; Liu, W.; Chen, L.; Tang, N. Design and experiment of the seedling pick-up device with ejecting pot-clamping stem combination. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2024, 40, 50–61, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jorg, O.J.; Sportelli, M.; Fontanelli, M.; Frasconi, C.; Raffaelli, M.; Fantoni, G. Development and Testing of Feeding Grippers for Vegetable Plug Transplanters. Agriengineering 2021, 3, 669–680. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, J.; Zhang, Y.; Tian, J.; Yuan, T.; Tan, Y.; Li, W. Development of insertion and ejection type seedling taking device for vegetable plug seedlings. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2020, 36, 96–104, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Liu, W.; Zhang, S.; Han, L.; Zeng, T. Experiment on combined seedling picking device with top clamping and pulling. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2022, 53 (Suppl. 1), 110–117+184. [Google Scholar] [CrossRef]
- Choi, W.C.; Kim, D.C.; Ryu, I.H.; Kim, K.U. Development of a seedling pickup device for vegetable transplanters. Trans. ASAE 2002, 45, 13. [Google Scholar] [CrossRef]
- Choi, I.-J.; Habineza, E.; Reza, N.; Park, S.-H.; Lee, D.-H.; Chung, S.-O. Theoretical kinematic analysis of a sliding-type picking mechanism for automatic pepper seedling transplanters. Korean J. Agric. Sci. 2024, 51, 497–511. [Google Scholar] [CrossRef]
- Han, L.; Kumi, F.; Mao, H.; Hu, J. Design and tests of a multi-pin flexible seedling pick-up gripper for automatic transplanting. Appl. Eng. Agric. 2019, 35, 949–957. [Google Scholar] [CrossRef]
- Mao, H.; Ma, G.; Han, L.; Hu, J.; Gao, F.; Liu, Y. A whole row automatic pick-up device using air force to blow out vegetable plug seedlings. Span. J. Agric. Res. 2021, 18, e0211. [Google Scholar] [CrossRef]
- Ma, G.; Mao, H.; Han, L.; Liu, Y.; Gao, F. Reciprocating mechanism for whole row automatic seedling picking and dropping on a transplanter. Appl. Eng. Agric. 2020, 36, 751–766. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Hu, J.; Tian, K. Development of a doorframe-typed swinging seedling pick-up device for automatic field transplantation. Span. J. Agric. Res. 2015, 13, e0210. [Google Scholar] [CrossRef]
- Na, M.; Teng, L.; Zhou, Z.; Zhou, K.; Wang, J.; Zhou, M. Design and experiment of fully automatic slide-track type dryland pot seedling transplanting mechanism. Trans. Chin. Soc. Agric. Mach. 2021, 52, 54–61. [Google Scholar] [CrossRef]
- Islam, N.; Iqbal, Z.; Ali, M.; Chowdhury, M.; Kabir, S.N.; Park, T.; Kim, Y.-J.; Chung, S.-O. Kinematic analysis of a clamp-type picking device for an automatic pepper transplanter. Agriculture 2020, 10, 627. [Google Scholar] [CrossRef]
- Jin, X.; Du, X.; Yang, C.; Ji, J.; Wang, S.; Yan, H. Design and experiment on crank-chute planting mechanism of transplanting machine. Transac-Tions Chin. Soc. Agric. Mach. 2016, 47, 83–90. [Google Scholar] [CrossRef]
- Iqbal, Z.; Islam, N.; Chowdhury, M.; Islam, S.; Park, T.; Kim, Y.-J.; Chung, S.-O. Working speed analysis of the gear-driven dibbling mechanism of a 2.6 kw walking-type automatic pepper transplanter. Machines 2021, 9, 6. [Google Scholar] [CrossRef]
- Iqbal, Z.; Islam, N.; Ali, M.; Kabir, S.N.; Park, T.; Kang, T.-G.; Park, K.-S.; Chung, S.-O. Kinematic analysis of a hopper-type dibbling mechanism for a 2.6 kW two-row pepper transplanter. J. Mech. Sci. Technol. 2021, 35, 2605–2614. [Google Scholar] [CrossRef]
- Ye, B.; Yu, G.; Chen, Z.; Zhao, Y. Kinematics modeling and parameters optimization of seedling pick-up mechanism of planetary gear train with eccentric gear and non-circular gear. Trans. CSAE 2011, 27, 7–12, (In Chinese with English Abstract). [Google Scholar]
- Yu, G. Study on vegetable plug seedling pick-up mechanism of planetary gear train with ellipse gears and incomplete non-circular gear. J. Mech. Eng. 2012, 48, 36–43, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yu, G.; Yu, T.; Ye, B.; Hu, H.; Wang, L. Design of a rotary plug seedling pick-up mechanism. J. Mech. Eng. 2015, 51, 67–76, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ye, B.; Zeng, G.; Deng, B.; Yang, C.; Liu, J.; Yu, G. Design and tests of a rotary plug seedling pick-up mechanism for vegetable automatic transplanter. Int. J. Agric. Biol. Eng. 2020, 13, 70–78. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Liao, H.; Xu, Y.X.; Chen, J.; Xiong, Y.; Xu, Y. Design of flower transplanting mechanisms based on double planet carrier non-circular gear train with complete rotation kinematic pair. Int. J. Agric. Biol. Eng. 2022, 15, 9–15. [Google Scholar] [CrossRef]
- Sun, L.; Shen, J.; Zhou, Y.; Ye, Z.; Yu, G.; Wu, C. Design of non-circular gear linkage combination driving type vegetable pot seedling transplanting mechanism. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2019, 35, 26–33, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Sun, L.; Hu, Y.; Xing, Y.; Yu, G.; Yu, Y. Motion Synthesis of Rotary Pot Seedling Transplanting Mechanism Based on Approximate Multi-pose. Trans. Chin. Soc. Agric. Mach. 2020, 51, 103–111, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Tong, J.; Yu, G.; Zhu, Y.; Ye, B.; Zheng, C.; Huang, J. Design and experiment of three-arms rotary vegetable plug seedling pick-up mechanism. Trans. Chin. Soc. Agric. Mach. 2019, 50, 113–121, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhao, X.; Shen, M.; Chen, J.; Dai, L. Kinematic analysis and virtual experiment of rotary pick-up mechanism on cotton transplanter. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2014, 30, 13–20, (In Chinese with English Abstract). [Google Scholar]
- Zhou, M.; Shan, Y.; Xue, X.; Yin, D. Theoretical analysis and development of a mechanism with punching device for transplanting potted vegetable seedlings. Int. J. Agric. Biol. Eng. 2020, 13, 85–92. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, T.; Wang, G.; Dong, H.; Yang, S.; Wang, Z. Design of a 2r open-chain plug seedling-picking mechanism and control system constrained by a differential non-circular planetary gear train. Agriculture 2024, 14, 1576. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, H.; Xu, X.; Yang, J.; Wang, G.; Wei, Z.; Xu, T.; Yin, J. Study on the method and mechanism of seedling picking for pepper (Capsicum annuum L.) Plug seedlings. Agriculture 2023, 14, 11. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Yu, G.; Qi, P.; Wang, L.; Zheng, J. Design and experiment of seedling picking mechanism for helical gear-non circular gear planetary gear system. Trans. Chin. Soc. Agric. Mach. 2023, 54, 77–86, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Rahul, K.; Raheman, H.; Paradkar, V. Design and development of a 5R 2DOF parallel robot arm for handling paper pot seedlings in a vegetable transplanter. Comput. Electron. Agric. 2019, 166, 105014. [Google Scholar] [CrossRef]
- Khadatkar, A.; Magar, A.P.; Sawant, C.P.; Modi, R.U. Development and testing of automatic seedling extractor in robotic transplanter using mechatronics for nursery seedlings. Discov. Appl. Sci. 2024, 6, 51. [Google Scholar] [CrossRef]
- Yue, R.; Yao, M.; Zhang, T.; Shi, J.; Zhou, J.; Hu, J. Design and Experiment of Dual-Row Seedling Pick-Up Device for High-Speed Automatic Transplanting Machine. Agriculture 2024, 14, 942. [Google Scholar] [CrossRef]
- Han, L.; Xiang, D.; Xu, Q.; Du, X.; Ma, G.; Mao, H. Development of Simplified Seedling Transplanting Device for Supporting Efficient Production of Vegetable Raw Materials. Appl. Sci. 2023, 13, 10022. [Google Scholar] [CrossRef]
- Han, L.; Mo, M.; Ma, H.; Kumi, F.; Mao, H. Design and Test of a Lateral-Approaching and Horizontal-Pushing Transplanting Manipulator for Greenhouse Seedlings. Appl. Eng. Agric. 2023, 39, 325–338. [Google Scholar] [CrossRef]
- Periasamy, V.; Duraisamy; Kavitha. Development of a picking and dropping mechanism for protray grown vegetable seedlings. J. Appl. Nat. Sci. 2021, 13, 47–54. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a multi-task robotic transplanting workcell for greenhouse seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Duan, H.; Yao, F.; Cai, X.; Jiang, H.; Tan, B.; Chen, H. Design and experiment of adsorption end-effector for potato tissue culture seedling transplanting. Trans. Chin. Soc. Agric. Mach. 2022, 53, 43–51, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Cui, Y.; Wei, Y.; Ding, X.; Cui, G.; He, Z.; Wang, M. Design and experiment of adjustable spacing end-effector based on cylindrical cam. Trans. Chin. Soc. Agric. Mach. 2022, 53, 104–114, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yue, R.; Hu, J.; Liu, Y.; Yao, M.; Zhang, T.; Shi, J. Design and working parameter optimization of pneumatic reciprocating seedling-picking device of automatic transplanter. Agriculture 2022, 12, 1989. [Google Scholar] [CrossRef]
- Ma, Z.; Rao, Y.; Tong, J.; Li, K.; Xu, M.; Wu, C. Sparse transplanting mechanism design with double row end effectors and work time sequence optimization for hydroponics pot seedlings in greenhouse. Trans. Chin. Soc. Agric. Mach. 2022, 53, 60–69, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Vlahidis, V.; Roșca, R.; Cârlescu, P.-M. Evaluation of the functional parameters for a single-row seedling transplanter prototype. Agriculture 2024, 14, 388. [Google Scholar] [CrossRef]
- Dihingia, P.C.; Kumar, G.P.; Sarma, P.K. Development of a hopper-type planting device for a walk-behind hand-tractor-powered vegetable transplanter. J. Biosyst. Eng. 2016, 41, 21–33. [Google Scholar] [CrossRef]
- Zhang, B.; Wen, X.; Wen, Y.; Wang, X.; Zhu, H.; Pan, Z.; Yang, Z. Design and testing of a closed multi-channel air-blowing seedling pick-up device for an automatic vegetable transplanter. Agriculture 2024, 14, 1688. [Google Scholar] [CrossRef]
- Wang, C.; Liu, C.; Li, Y.; Song, J.; Wang, J.; Dong, X. Design and experiment of pneumatic punching high-speed seedling picking device for vegetable transplanter. Trans. Chin. Soc. Agric. Mach. 2021, 52, 35–43, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Song, J.; Zhou, J.; Wang, H.; Liao, D. Limit of synchronous seedling reaching of pneumatic ejecting type high-speed transplanter. Trans. Chin. Soc. Agric. Mach. 2024, 55, 133–142, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Lai, Q.; Zhao, J.; Su, W.; Jia, G.; Li, J.; Lv, Q. Design and test of air suction directional transplanting device for panax notoginseng seedlings based on DEM-CFD coupling. Trans. Chin. Soc. Agric. Mach. 2021, 52, 60–70, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, M. Design and Experimental Research on Critical Components of Auto Transplanter with Combined Tray. Master’s Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
Transplanters | Advantage | Disadvantage | Application Scenarios | Reference | |
---|---|---|---|---|---|
Handheld Transplanter | Simple structure, low cost | Low efficiency, poor transplanting quality | Suitable for small-scale farmers and small plots | Habineza et al. [20] | |
Semi-Automatic Transplanter | Duckbilled | High uprightness, good transplanting effect, strong applicability | Not suitable for transplanting with small plant spacing. The transplanting effect is affected by forward speed | Plug-seedling transplanting operation | Jo et al. [45] |
Chain-Clip | Simple structure, low cost, good uprightness of plug seedlings | Only suitable for low-speed operation | Bare-root seedling transplanting | Wang et al. [46] | |
Guide-Tube | High consistency in planting row spacing and depth, high operating speed, and low seedling damage rate | Difficult to adjust plant spacing and uprightness, prone to seedling plug breakage | Plug-seedling transplanting operation | Qin et al. [47] | |
Flexible-Disc | Low damage, good adaptability to plant spacing | Prone to disc wear, short service life, unstable planting depth | Transplanting of long-stem crops, such as scallions | Li [48] | |
Automatic Transplanter | Plug-seedling transplanter | Automatic seedling picking, high efficiency, low damage | High costs, high operational threshold | Plug-seedling transplanting operation | Ji et al. [49] |
Carpet-seedling transplanter | High transplanting efficiency. Integrated seedling picking and planting with fewer mechanisms | High root damage to seedlings, requiring a recovery period after transplanting; high requirements for soil preparation | Only suitable for crops that can be cultivated into carpet seedlings | Wu et al. [40] |
Mechanism Configurations | Mechanism | Advantage | Disadvantage | Reference |
---|---|---|---|---|
link configuration | Basic mechanisms feature simple structures, low production costs, and ease of manufacturing and maintenance. | With limited motion, these mechanisms result in poor seedling verticality and low adaptability. | Chen et al. [60] | |
The simplest closed-loop mechanism with multiple DOF, featuring a relatively stable structure, high reliability, and good adaptability. | The difficulty and complexity of mechanism optimization are higher than those of four-bar mechanism optimization. | Xu et al. [61,62] | ||
Quick-return characteristic and high transplanting efficiency. Smooth trajectory | Limited flexibility and adaptability, restricted load-carrying capacity | Li et al. [63] | ||
Complex motion trajectories realization, good verticality to the ridge surface, high seedling uprightness, smooth working trajectories | Complex structure, high manufacturing and debugging difficulty, and strict mating precision requirements. High maintenance costs | Inoue Corporation of Japan [64] | ||
Reduction in forward speed influence on planting performance. Realization of quick-planting and force-transmission properties | Numerous members, complex structure, and large dimensions, mutual influence of member parameters, high optimization difficulty | Yin et al. [65] | ||
Planetary gear train | High-position seedling receiving and low-position planting. Small-to-medium plant spacing for transplanting. High planting quality and good adaptability | Numerous transmission components and a complex structure, with strict requirements for processing and assembly precision, high manufacturing costs, and maintenance difficulty | Xin et al. [59] |
Seedling Picking Methods | Main Implementation Forms | Advantage | Disadvantage |
---|---|---|---|
ejector-type | Crank-slider type | Cam profile contact prone to wear. Short seedling ejection stroke. | Requires multimechanism coordination. Complex mechanical transmission. |
Servo push-rod type | Compact structure, fast speed, and low seedling damage rate. | Low efficiency and high cost. | |
Pneumatic type | High automation level, high seedling picking efficiency. | Require precise coordination of various mechanisms and complex control. | |
gripper-type | Slide-way type | Capable of achieving complex seedling extraction trajectories. | Prone to wear and tear, high vibration, and impact. |
Multi-link type | Simple structure, low cost, easy to process and manufacture. | High mechanical inertia force, leading to low seedling extraction efficiency. | |
gripper-type | Linear slide table type | High seedling selection precision. | Low transplanting efficiency, mainly applied to greenhouse transplanting. |
Planetary gear type | Capable of arranging multiple seedling extraction arms, featuring high extraction efficiency and smooth motion. | Challenging design and manufacturing of non-circular gears. | |
free-fall type | Mechanical press-down type | Simple structure, low cost, reliable performance. | Only applicable for small seedlings. |
Negative-pressure type | Strong suction, low seedling damage, and missing rate. | High energy consumption. Difficult to maintain good sealing. | |
Air-blowing type | No rigid mechanism acting on plug seedlings. | Low seedling extraction success rate and high energy consumption. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Li, X.; He, J.; Han, S.; Wang, G.; Yin, D.; Zhou, M. Research Progress and Future Prospects of Key Technologies for Dryland Transplanters. Appl. Sci. 2025, 15, 8073. https://doi.org/10.3390/app15148073
Xu T, Li X, He J, Han S, Wang G, Yin D, Zhou M. Research Progress and Future Prospects of Key Technologies for Dryland Transplanters. Applied Sciences. 2025; 15(14):8073. https://doi.org/10.3390/app15148073
Chicago/Turabian StyleXu, Tingbo, Xiao Li, Jijia He, Shuaikang Han, Guibin Wang, Daqing Yin, and Maile Zhou. 2025. "Research Progress and Future Prospects of Key Technologies for Dryland Transplanters" Applied Sciences 15, no. 14: 8073. https://doi.org/10.3390/app15148073
APA StyleXu, T., Li, X., He, J., Han, S., Wang, G., Yin, D., & Zhou, M. (2025). Research Progress and Future Prospects of Key Technologies for Dryland Transplanters. Applied Sciences, 15(14), 8073. https://doi.org/10.3390/app15148073