Reliability and Validity of the Jumpster Accelerometer-Based App Compared to the Vertec When Completing a Countermovement Jump: An Examination of Field-Accessible Tools
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Jump and Testing Procedures
2.3. Data Processing and Analysis
3. Results
3.1. Participant Details
3.2. Validity Results
3.3. Reliability Results
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VJ | Vertical jump |
CMJ | Countermovement jump |
SEM | Standard error of the measure |
PI95 | 95% predictive intervals |
TL95 | 95% tolerance limits |
CV | Coefficient of variation |
ICC 2,K | Intraclass correlation coefficient |
CI | Confidence interval |
References
- Trombetti, A.; Reid, K.F.; Hars, M.; Herrmann, F.R.; Pasha, E.; Phillips, E.M.; Fielding, R.A. Age-associated declines in muscle mass, strength, power, and physical performance: Impact on fear of falling and quality of life. Osteoporos. Int. 2016, 27, 463–471. [Google Scholar] [CrossRef]
- Alcazar, J.; Aagaard, P.; Haddock, B.; Kamper, R.S.; Hansen, S.K.; Prescott, E.; Alegre, L.M.; Frandsen, U.; Suetta, C. Age- and sex-specific changes in lower-limb muscle power throughout the lifespan. J. Gerontol. Ser. A 2020, 75, 1369–1378. [Google Scholar] [CrossRef]
- Shur, N.F.; Creedon, L.; Skirrow, S.; Atherton, P.J.; MacDonald, I.A.; Lund, J.; Greenhaff, P.L. Age-related changes in muscle architecture and metabolism in humans: The likely contribution of physical inactivity to age-related functional decline. Ageing Res. Rev. 2021, 68, 101344. [Google Scholar] [CrossRef]
- Runge, M.; Rittweger, J.; Russo, C.R.; Schiessl, H.; Felsenberg, D. Is muscle power output a key factor in the age-related decline in physical performance? A comparison of muscle cross section, chair-rising test and jumping power. Clin. Physiol. Funct. Imaging 2004, 24, 335–340. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; MacDonald, J.P. Dynapenia: It’s not just for grown-ups anymore. Acta Paediatr. 2017, 106, 696–697. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Ratamess, N.A.; Kang, J.; Bush, J.A.; Rebullido, T.R. May the force be with youth: Foundational strength for lifelong development. Curr. Sports Med. Rep. 2023, 22, 414–422. [Google Scholar] [CrossRef]
- Katartzi, E.; Gantiraga, E.; Komsis, G. The relationship between specific strength components of lovver limbs and vertical jumping ability in school-aged children. J. Hum. Mov. Stud 2005, 48, 227–243. [Google Scholar]
- Argaud, S.; Pairot De Fontenay, B.; Blache, Y.; Monteil, K. Explosive movement in the older men: Analysis and comparative study of vertical jump. Aging Clin. Exp. Res. 2017, 29, 985–992. [Google Scholar] [CrossRef]
- Baptista, F.; Zymbal, V.; Janz, K.F. Predictive validity of handgrip strength, vertical jump power, and plank time in the identification of pediatric sarcopenia. Meas. Phys. Educ. Exerc. Sci. 2022, 26, 361–370. [Google Scholar] [CrossRef]
- Santos, C.A.F.; Amirato, G.R.; Jacinto, A.F.; Pedrosa, A.V.; Caldo-Silva, A.; Sampaio, A.R.; Pimenta, N.; Santos, J.M.B.; Pochini, A.; Bachi, A.L.L. Vertical jump tests: A safe instrument to improve the accuracy of the functional capacity assessment in robust older women. Healthcare 2022, 10, 323. [Google Scholar] [CrossRef]
- Pupo, J.D.; Ache-Dias, J.; Kons, R.L.; Detanico, D. Are vertical jump height and power output correlated to physical performance in different sports? An allometric approach. Hum. Mov. 2020, 22, 60–67. [Google Scholar] [CrossRef]
- Forte, R.; Macaluso, A. Relationship between performance-based and laboratory tests for lower-limb muscle strength and power assessment in healthy older women. J. Sports Sci. 2008, 26, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Temfemo, A.; Hugues, J.; Chardon, K.; Mandengue, S.-H.; Ahmaidi, S. Relationship between vertical jumping performance and anthropometric characteristics during growth in boys and girls. Eur. J. Pediatr. 2009, 168, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, D.; Savić, Z.; Vidaković, H.M.; Stojanović, T.; Momčilović, Z.; Stojanović, T. Relationship between body composition and vertical jump performance among adolescents. Acta Medica Median. 2020, 59, 64–70. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of vertical jump measurement devices. J. Sports Sci. 2012, 30, 63–69. [Google Scholar] [CrossRef]
- Dias, J.A.; Pupo, J.D.; Reis, D.C.; Borges, L.; Santos, S.G.; Moro, A.R.; Borges, N.G. Validity of two methods for estimation of vertical jump height. J. Strength Cond. Res. 2011, 25, 2034–2039. [Google Scholar] [CrossRef]
- Leard, J.S.; Cirillo, M.A.; Katsnelson, E.; Kimiatek, D.A.; Miller, T.W.; Trebincevic, K.; Garbalosa, J.C. Validity of two alternative systems for measuring vertical jump height. J. Strength Cond. Res. 2007, 21, 1296–1299. [Google Scholar]
- Bogataj, Š.; Pajek, M.; Hadžić, V.; Andrašić, S.; Padulo, J.; Trajković, N. Validity, reliability, and usefulness of My Jump 2 app for measuring vertical jump in primary school children. Int. J. Environ. Res. Public Health 2020, 17, 3708. [Google Scholar] [CrossRef]
- Gallardo-Fuentes, F.; Gallardo-Fuentes, J.; Ramírez-Campillo, R.; Balsalobre-Fernández, C.; Martínez, C.; Caniuqueo, A.; Cañas, R.; Banzer, W.; Loturco, I.; Nakamura, F.Y.; et al. Intersession and intrasession reliability and validity of the My Jump App for measuring different jump actions in trained male and female athletes. J. Strength Cond. Res. 2016, 30, 2049–2056. [Google Scholar] [CrossRef]
- Stanton, R.; Kean, C.O.; Scanlan, A.T. My Jump for vertical jump assessment. Br. J. Sports Med. 2015, 49, 1157–1158. [Google Scholar] [CrossRef]
- Yingling, V.R.; Castro, D.A.; Duong, J.T.; Malpartida, F.J.; Usher, J.R.; O, J. The reliability of vertical jump tests between the Vertec and My Jump phone application. PeerJ 2018, 6, e4669. [Google Scholar] [CrossRef] [PubMed]
- Cruvinel-Cabral, R.M.; Oliveira-Silva, I.; Medeiros, A.R.; Claudino, J.G.; Jiménez-Reyes, P.; Boullosa, D.A. The validity and reliability of the “My Jump App” for measuring jump height of the elderly. PeerJ 2018, 6, e5804. [Google Scholar] [CrossRef] [PubMed]
- Gençoğlu, C.; Ulupınar, S.; Özbay, S.; Turan, M.; Savaş, B.Ç.; Asan, S.; İnce, İ. Validity and reliability of “My Jump App” to assess vertical jump performance: A meta-analytic review. Sci. Rep. 2023, 13, 20137. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Silva, I.; Cruvinel-Cabral, R.M.; Medeiros, A.R.; Boullosa, D.A. Validity of My Jump App to measure vertical jump height of the elderly: 2484 Board #8 June 11. Med. Sci. Sports Exerc. 2018, 50, 615. [Google Scholar] [CrossRef]
- Bogataj, Š.; Pajek, M.; Andrašić, S.; Trajković, N. Concurrent validity and reliability of My Jump 2 App for measuring vertical jump height in recreationally active adults. Appl. Sci. 2020, 10, 3805. [Google Scholar] [CrossRef]
- Oh, D.-S.; Choi, Y.-H.; Shim, Y.-J.; Park, S.-H.; Lee, M.-M. Concurrent validity, inter-, and intrarater reliabilities of smart device based application for measuring vertical jump performance. Balt. J. Health Phys. Act. 2020, 12, 4. [Google Scholar] [CrossRef]
- Montalvo, S.; Gonzalez, M.P.; Dietze-Hermosa, M.S.; Eggleston, J.D.; Dorgo, S. Common vertical jump and reactive strength index measuring devices: A validity and reliability analysis. J. Strength Cond. Res. 2021, 35, 1234–1243. [Google Scholar] [CrossRef]
- Dow, M. Concurrent Validity and Reliability of Mobile Applications in Measuring Vertical Jump Performance. Bachelor’s Thesis, Point Loma Nazarene University, San Diego, CA, USA, 2019. [Google Scholar]
- Vieira, A.; Ribeiro, G.L.; Macedo, V.; De Araújo Rocha Junior, V.; Baptista, R.D.S.; Gonçalves, C.; Cunha, R.; Tufano, J. Evidence of validity and reliability of Jumpo 2 and MyJump 2 for estimating vertical jump variables. PeerJ 2023, 11, e14558. [Google Scholar] [CrossRef]
- Vieira, A.; Blazevich, A.J.; DA Costa, A.S.; Tufano, J.J.; Bottaro, M. Validity and test-retest reliability of the Jumpo app for jump performance measurement. Int. J. Exerc. Sci. 2021, 14, 677–686. [Google Scholar]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Van Stralen, K.J.; Dekker, F.W.; Zoccali, C.; Jager, K.J. Measuring agreement, more complicated than it seems. Nephron Clin. Pract. 2012, 120, c162–c167. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, A.R. SimplyAgree: An R package and Jamovi module for simplifying agreement and reliability analyses. J. Open Source Softw. 2022, 7, 4148. [Google Scholar] [CrossRef]
- Francq, B.G.; Berger, M.; Boachie, C. To tolerate or to agree: A tutorial on tolerance intervals in method comparison studies with BivRegBLS R package. Stat. Med. 2020, 39, 4334–4349. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Coskun, A. bias in laboratory medicine: The dark side of the moon. Ann. Lab. Med. 2024, 44, 6–20. [Google Scholar] [CrossRef]
- Strongman, C.; Cavallerio, F.; Timmis, M.A.; Morrison, A. A scoping review of the validity and reliability of smartphone accelerometers when collecting kinematic gait data. Sensors 2023, 23, 8615. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Agopyan, H.; Morin, J.-B. The validity and reliability of an iPhone app for measuring running mechanics. J. Appl. Biomech. 2017, 33, 222–226. [Google Scholar] [CrossRef]
- Peláez Barrajón, J.; San Juan, A.F. Validity and reliability of a smartphone accelerometer for measuring lift velocity in bench-press exercises. Sustainability 2020, 12, 2312. [Google Scholar] [CrossRef]
- Mateos-Angulo, A.; Galán-Mercant, A.; Cuesta-Vargas, A.I. Kinematic mobile drop jump analysis at different heights based on a smartphone inertial sensor. J. Hum. Kinet. 2020, 73, 57–65. [Google Scholar] [CrossRef]
- Cabarkapa, D.V.; Cabarkapa, D.; Aleksic, J.; Ranisavljev, I.; Fry, A.C. Does the short-term learning effect impact vertical jump performance assessment on a portable force plate system? Front. Sports Act. Living 2024, 6, 1441022. [Google Scholar] [CrossRef] [PubMed]
- Bchini, S.; Hammami, N.; Selmi, T.; Zalleg, D.; Bouassida, A. Influence of muscle volume on jumping performance in healthy male and female youth and young adults. BMC Sports Sci. Med. Rehabil. 2023, 15, 26. [Google Scholar] [CrossRef] [PubMed]
- Alvero-Cruz, J.R.; Brikis, M.; Chilibeck, P.; Frings-Meuthen, P.; Vico Guzmán, J.F.; Mittag, U.; Michely, S.; Mulder, E.; Tanaka, H.; Tank, J.; et al. Age-related decline in vertical jumping performance in masters track and field athletes: Concomitant influence of body composition. Front. Physiol. 2021, 12, 643649. [Google Scholar] [CrossRef] [PubMed]
- Sisneros, K.; Maurya, P.; Johnson, E.; Ford, B.; Palmer, T.Y. Age-related differences in vertical jump height and handgrip strength measurements. Acta Bioeng. Biomech. 2023, 25, 19–26. [Google Scholar] [CrossRef]
- Fernández-Peña, E.; Formiglio, E.; Gervasi, M.; Benelli, P.; Bertuccioli, A.; Russo, G.; Giustino, V.; Patti, A. The impact of track and field training on dynapenia: Gender differences in age-related decline of vertical jump performance among older adults. Front. Aging 2024, 5, 1504789. [Google Scholar] [CrossRef]
All Participants | Men | Women | Men vs. Women | |
---|---|---|---|---|
n | 36 | 22 | 14 | |
Age (years) | 22.7 ± 6.4 | 24.0 ± 7.9 | 20.6 ± 1.0 | p = 0.06 |
Height (cm) | 172.7 ± 9.2 | 178.1 ± 6.0 | 164.3 ± 6.7 | p < 0.01 |
Weight (kg) | 81.4 ± 18.8 | 90.9 ± 16.3 | 66.4 ± 11.4 | p < 0.01 |
Max Vertec Jump Height (cm) | 51.5 ± 11.3 | 56.7 ± 9.1 | 43.4 ± 9.8 | p < 0.01 |
Max Jumpster Jump Height (cm) | 47.0 ± 16.5 | 49.3 ± 19.4 | 43.5 ± 10.0 | p = 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holman, M.E.; Harnish, C.R. Reliability and Validity of the Jumpster Accelerometer-Based App Compared to the Vertec When Completing a Countermovement Jump: An Examination of Field-Accessible Tools. Appl. Sci. 2025, 15, 7768. https://doi.org/10.3390/app15147768
Holman ME, Harnish CR. Reliability and Validity of the Jumpster Accelerometer-Based App Compared to the Vertec When Completing a Countermovement Jump: An Examination of Field-Accessible Tools. Applied Sciences. 2025; 15(14):7768. https://doi.org/10.3390/app15147768
Chicago/Turabian StyleHolman, Matthew E., and Christopher R. Harnish. 2025. "Reliability and Validity of the Jumpster Accelerometer-Based App Compared to the Vertec When Completing a Countermovement Jump: An Examination of Field-Accessible Tools" Applied Sciences 15, no. 14: 7768. https://doi.org/10.3390/app15147768
APA StyleHolman, M. E., & Harnish, C. R. (2025). Reliability and Validity of the Jumpster Accelerometer-Based App Compared to the Vertec When Completing a Countermovement Jump: An Examination of Field-Accessible Tools. Applied Sciences, 15(14), 7768. https://doi.org/10.3390/app15147768