Do Spatial Trajectories of Social Media Users Imply the Credibility of the Users’ Tweets During Earthquake Crisis Management?
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Retrieval and Filtering
2.2. Data Cleaning and Tidying
- A word list of technical terms (e.g., “mww”, “mwr”, “mw”, and “ml”) was applied to tweet content to identify tweets from sensor-based bot accounts.
- A word list of earthquake-related terms (e.g., “quake”, “afad”, “dask”, “deprem”, and “kandilli_info”) was applied to account names to filter out tweets from earthquake institutions in Türkiye and worldwide.
- A word list of news-related terms (e.g., “news”, “haber”, and “trendinalia”) was applied to account names to exclude tweets from news-feeding bot accounts.
2.3. Data Labelling
2.4. Feature Extraction
for each tweet in dataset:
distance_meters = distHaversine(lon.x, lat.x, lon.eq, lat.eq)
distance_km = distance_meters/1000
append distance_km to dataset
for each tweet in dataset:
convert timestamp.x and timestamp.y to POSIXct format
assign UTC timezone to timestamp.x and timestamp.y if not already set
time_difference_hours = difftime(timestamp.x, timestamp.y, units = “hours”)
append time_difference_hours to dataset
- EQ_magnitude_Class: Categorised into three classes (5, 6, and 7), corresponding to EQs with magnitudes less than 6, 7, and 8, respectively. This feature is named EQ_magnitude_Class in the model dataset.
- Temporal Features Class (TFC): Categorised into four classes (0, 1, 2, and 3), representing the time difference between EQ occurrence and the corresponding tweet as follows: ≤1 h, ≤1 day, ≤2 days, and ≤3 days, respectively. This feature is named TFC_EQ_tweet-EQ_Location in the model dataset.
- Spatial Proximity Class (SPC): Categorised into six classes (0, 1, 2, 3, 4, and 5), representing the spatial distance between the EQ location and the location of the tweet as follows: ≤100 km, ≤200 km, ≤300 km, ≤400 km, ≤500 km, and >500 km, respectively. This feature is named SPC_EQ_Tweet-EQ_Location in the model dataset.
- Temporal Features Class (TFC): Categorised into five classes (0, 1, 2, 3, and 4), representing the time difference between the EQ occurrence and the trajectory tweet as follows: within 3 days after the event, 3 days before, within 1 month before, within 2 months before, within 3 months before, respectively. This feature is named TFC_trajPoint-EQ_Time and is pivoted along with four other features—SPC_trajPoint-EQ_Location, SPC_ trajPoint-EQ_Tweet, MBC_trajStepLength, and MBC_velocity—in the model dataset.
- Spatial Proximity Class (SPC): Two SPC features are extracted under this title.
- o
- SPC_trajPoint-EQ_Location is categorised into six classes (0, 1, 2, 3, 4, and 5), representing the spatial distance between the EQ location and the location of the trajectory tweet as follows: ≤100 km, ≤200 km, ≤300 km, ≤400 km, ≤500 km, and >500 km, respectively.
- o
- SPC_ trajPoint-EQ_Tweet is categorised into six classes (0, 1, 2, 3, 4, and 5), representing the spatial distance between the EQ tweet location and the location of the trajectory tweet as follows: ≤100 km, ≤200 km, ≤300 km, ≤400 km, ≤500 km, and >500 km, respectively.
- Movement Behaviour Class (MBC): Two MBC features are extracted under this title.
- o
- MBC_trajStepLength is categorised into six classes (0, 1, 2, 3, 4, and 5), representing the step length between two trajectory tweets as follows: ≤0.5 km, ≤5 km, ≤50 km, ≤100 km, ≤500 km, and >500 km, respectively.
- o
- MBC_velocity is categorised into six classes (0, 1, 2, 3, 4, and 5), representing the velocity between two trajectory tweets as follows: ≤5 km/h, ≤10 km/h, ≤50 km/h, ≤100 km/h, ≤500 km/h, and >500 km/h, respectively.
2.5. Applied Models
2.6. Applied Model Evaluation Metrics
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, Y.; Cui, S. A review of emergency response in disasters: Present and future perspectives. Nat. Hazards 2021, 105, 1109–1138. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, J. The progress of emergency response and rescue in China: A comparative analysis of Wenchuan and Lushan earthquakes. Nat. Hazards 2014, 74, 421–444. [Google Scholar] [CrossRef]
- Shigihara, Y.; Ariga, E.; Fukutani, Y.; Tada, T. Assessing the rescue capabilities of administrative agencies and estimating rescue team dispatch for tsunami disasters. Int. J. Disaster Risk Reduct. 2024, 115, 105030. [Google Scholar] [CrossRef]
- United Nations Office for the Coordination of Humanitarian Affairs (OCHA). 5 Essentials for the First 72 Hours of Disaster Response. 2017. Available online: https://www.unocha.org/publications/report/world/5-essentials-first-72-hours-disaster-response (accessed on 1 January 2025).
- Saroj, A.; Pal, S. Use of social media in crisis management: A survey. Int. J. Disaster Risk Reduct. 2020, 48, 101584. [Google Scholar] [CrossRef]
- Yu, M.; Yang, C.; Li, Y. Big data in natural disaster management: A review. Geosciences 2018, 8, 165. [Google Scholar] [CrossRef]
- Neppalli, V.K.; Caragea, C.; Squicciarini, A.; Tapia, A.; Stehle, S. Sentiment analysis during Hurricane Sandy in emergency response. Int. J. Disaster Risk Reduct. 2017, 21, 213–222. [Google Scholar] [CrossRef]
- Mihunov, V.V.; Lam, N.S.N.; Zou, L.; Wang, Z.; Wang, K. Use of Twitter in disaster rescue: Lessons learned from Hurricane Harvey. Int. J. Digit. Earth 2020, 13, 1454–1466. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, C. Tracing the spatial-temporal evolution of events based on social media data. ISPRS Int. J. Geo Inf. 2017, 6, 88. [Google Scholar] [CrossRef]
- Chen, M.; Arribas-Bel, D.; Singleton, A. Quantifying the characteristics of the local urban environment through geotagged Flickr photographs and image recognition. ISPRS Int. J. Geo Inf. 2020, 9, 264. [Google Scholar] [CrossRef]
- Gulnerman, A.G.; Karaman, H.; Pekaslan, D.; Bilgi, S. Citizens’ spatial footprint on Twitter—Anomaly, trend and bias investigation in Istanbul. ISPRS Int. J. Geo Inf. 2020, 9, 222. [Google Scholar] [CrossRef]
- Beigi, G.; Hu, X.; Maciejewski, R.; Liu, H. An overview of sentiment analysis in social media and its applications in disaster relief. In Sentiment Analysis and Ontology Engineering; Springer: Cham, Switzerland, 2016; pp. 313–340. [Google Scholar]
- Chapman, L.; Resch, B.; Sadler, J.; Zimmer, S.; Roberts, H.; Petutschnig, A. Investigating the emotional responses of individuals to urban green space using Twitter data: A critical comparison of three different methods of sentiment analysis. Urban Plan. 2018, 3, 21–33. [Google Scholar]
- Calafiore, A.; Palmer, G.; Comber, S.; Arribas-Bel, D.; Singleton, A. A geographic data science framework for the functional and contextual analysis of human dynamics within global cities. Comput. Environ. Urban Syst. 2021, 85, 101539. [Google Scholar] [CrossRef]
- Ahmouda, A.; Hochmair, H.H.; Cvetojevic, S. Using Twitter to analyze the effect of hurricanes on human mobility patterns. Urban Sci. 2019, 3, 87. [Google Scholar] [CrossRef]
- Gulnerman, A.G. Changing pattern of human movements in Istanbul during COVID-19. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 13–16 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 220–230. [Google Scholar]
- Houston, J.B.; Hawthorne, J.; Perreault, M.F.; Park, E.H.; Goldstein Hode, M.; Halliwell, M.R.; McGowen, S.E.T.; Davis, R.; Vaid, S.; Mcelderry, J.A.; et al. Social media and disasters: A functional framework for social media use in disaster planning, response, and research. Disasters 2015, 39, 1–22. [Google Scholar] [CrossRef]
- Huang, Q.; Xiao, Y. Geographic situational awareness: Mining tweets for disaster preparedness, emergency response, impact, and recovery. ISPRS Int. J. Geo Inf. 2015, 4, 1549–1568. [Google Scholar] [CrossRef]
- Resch, B.; Uslander, F.; Havas, C. Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment. Cartogr. Geogr. Inf. Sci. 2018, 45, 362–376. [Google Scholar] [CrossRef]
- Hecht, B.; Hong, L.; Suh, B.; Chi, E.H. Tweets from Justin Bieber’s heart: The dynamics of the location field in user profiles. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; ACM: New York, NY, USA, 2011; pp. 237–246. [Google Scholar]
- Gupta, A.; Kumaraguru, P. Credibility ranking of tweets during high impact events. In Proceedings of the 1st Workshop on Privacy and Security in Online Social Media, Lyon, France, 17 April 2012; pp. 2–8. [Google Scholar]
- Truelove, M.; Vasardani, M.; Winter, S. Testing the event witnessing status of micro-bloggers from evidence in their micro-blogs. PLoS ONE 2017, 12, e0189378. [Google Scholar] [CrossRef]
- Abbasi, M.-A.; Liu, H. Measuring user credibility in social media. In Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, Washington, DC, USA, 2–5 April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 441–448. [Google Scholar]
- Yang, J.; Yu, M.; Qin, H.; Lu, M.; Yang, C. A Twitter data credibility framework—Hurricane Harvey as a use case. ISPRS Int. J. Geo Inf. 2019, 8, 111. [Google Scholar] [CrossRef]
- Mazimpaka, J.D.; Timpf, S. Trajectory data mining: A review of methods and applications. J. Spat. Inf. Sci. 2016, 13, 61–99. [Google Scholar] [CrossRef]
- Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–41. [Google Scholar] [CrossRef]
- Spinsanti, L.; Berlingerio, M.; Pappalardo, L. Mobility and geo-social networks. In Mobility Data: Modeling, Management, and Understanding; Cambridge Press: Cambridge, UK, 2013. [Google Scholar]
- Pelekis, N.; Theodoridis, Y. Mobility Data Management and Exploration; Springer: New York, NY, USA, 2014. [Google Scholar]
- Jurdak, R.; Zhao, K.; Liu, J.; AbouJaoude, M.; Cameron, M.; Newth, D. Understanding human mobility from Twitter. PLoS ONE 2015, 10, e0131469. [Google Scholar] [CrossRef] [PubMed]
- Andrienko, G.; Andrienko, N.; Bosch, H.; Ertl, T.; Fuchs, G.; Jankowski, P.; Thom, D. Thematic patterns in georeferenced tweets through space-time visual analytics. Comput. Sci. Eng. 2013, 15, 72–82. [Google Scholar] [CrossRef]
- Chae, J.; Cui, Y.; Jang, Y.; Wang, G.; Malik, A.; Ebert, D.S. Trajectory-based visual analytics for anomalous human movement analysis using social media. In EuroVA@EuroVis; The Eurographics Association: Eindhoven, the Netherlands, 2015; pp. 43–47. [Google Scholar]
- Wang, Y.; Taylor, J.E. Coupling sentiment and human mobility in natural disasters: A Twitter-based study of the 2014 South Napa earthquake. Nat. Hazards 2018, 92, 907–925. [Google Scholar] [CrossRef]
- Hübl, F.; Cvetojevic, S.; Hochmair, H.; Paulus, G. Analyzing refugee migration patterns using geo-tagged tweets. ISPRS Int. J. Geo Inf. 2017, 6, 302. [Google Scholar] [CrossRef]
- Ma, D.; Osaragi, T.; Oki, T.; Jiang, B. Exploring the heterogeneity of human urban movements using geo-tagged tweets. Int. J. Geogr. Inf. Sci. 2020, 34, 2475–2496. [Google Scholar] [CrossRef]
- Kang, Y.; Gao, S.; Liang, Y.; Li, M.; Rao, J.; Kruse, J. Multiscale dynamic human mobility flow dataset in the US during the COVID-19 epidemic. Sci. Data 2020, 7, 390. [Google Scholar] [CrossRef]
- Hanny, D.; Resch, B. Multimodal GeoAI: An integrated spatio-temporal topic-sentiment model for the analysis of geo-social media posts for disaster management. Int. J. Appl. Earth Obs. Geoinf. 2025, 139, 104540. [Google Scholar] [CrossRef]
- Xdevelopers. [Tweet]. X. Available online: https://x.com/XDevelopers/status/1621026986784337922 (accessed on 2 February 2023).
- Richter, C.F. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am. 1935, 25, 1–32. [Google Scholar] [CrossRef]
- Boğaziçi University Kandilli Observatory and Earthquake Research Institute (KOERI). Earthquake Catalog Search System. 2025. Available online: http://udim.koeri.boun.edu.tr/zeqmap/hgmmapen.asp (accessed on 26 August 2024).
- Hijmans, R. Geosphere: Spherical Trigonometry. R Package Version 1.5-20 2024. Available online: https://CRAN.R-project.org/package=geosphere (accessed on 1 January 2025).
- USGS. Earthquake Magnitude, Energy Release, and Shaking Intensity. Available online: https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-release-and-shaking-intensity (accessed on 1 June 2025).
- Crooks, A.; Croitoru, A.; Stefanidis, A.; Radzikowski, J. #Earthquake: Twitter as a distributed sensor system. Trans. GIS 2013, 17, 124–147. [Google Scholar]
- Zheng, Y.; Zhang, L.; Xie, X.; Ma, W.Y. Mining interesting locations and travel sequences from GPS trajectories. In Proceedings of the 18th International Conference on World Wide Web, New York, NY, USA, 20–24 April 2009; pp. 791–800. [Google Scholar]
- Feng, C.M.; Wang, T.C. Highway emergency rehabilitation scheduling in post-earthquake 72 hours. J. 5th East. Asia Soc. Transp. Stud. 2003, 5, 3276–3285. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009; p. 222. [Google Scholar]
- Therneau, T.; Atkinson, B. Rpart: Recursive Partitioning and Regression Trees (Version 4.1.24). 2025. Available online: https://CRAN.R-project.org/package=rpart (accessed on 12 April 2025).
- Weihs, C.; Ligges, U.; Luebke, K.; Raabe, N. klaR: Analyzing German business cycles. In Data Analysis and Decision Support; Baier, D., Decker, R., Schmidt-Thieme, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 335–343. [Google Scholar]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Karatzoglou, A.; Smola, A.; Hornik, K. Kernlab: Kernel-Based Machine Learning Lab (Version 0.9-33). 2024. Available online: https://CRAN.R-project.org/package=kernlab (accessed on 12 April 2025).
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. Available online: https://CRAN.R-project.org/doc/Rnews/ (accessed on 26 August 2024).
- Fryda, T.; LeDell, E.; Gill, N.; Aiello, S.; Fu, A.; Candel, A.; Click, C.; Kraljevic, T.; Nykodym, T.; Aboyoun, P.; et al. H2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform (Version 3.44.0.3). 2024. Available online: https://CRAN.R-project.org/package=h2o (accessed on 12 January 2025).
- Ballatore, A.; De Sabbata, S. Charting the geographies of crowdsourced information in Greater London. In Proceedings of the Annual International Conference on Geographic Information Science, Lund, Sweden, 12–15 June 2018; Springer: Cham, Switzerland, 2018; pp. 149–168. [Google Scholar]
- Ballatore, A.; De Sabbata, S. Los Angeles as a digital place: The geographies of user-generated content. Trans. GIS 2020, 24, 880–902. [Google Scholar] [CrossRef]
ID | Place Name | Date/Time | Latitude | Longitude | Magnitude | Tweet Count | Account Count |
---|---|---|---|---|---|---|---|
1 | Ayvacik Aciklari-EGE DENIZI | 6 February 2017 10:58:00 | 39.5014 | 26.0621 | 5.1 | 38 | 33 |
2 | Ayvacik-Canakkale | 7 February 2017 02:24:03 | 39.5164 | 26.0997 | 5.3 | 25 | 22 |
3 | Ayvacik-Canakkale | 12 February 2017 13:48:16 | 39.5048 | 26.1076 | 5 | 22 | 18 |
4 | Samsat-Adiyaman | 2 March 2017 11:07:27 | 37.5961 | 38.4724 | 5.2 | 27 | 26 |
5 | Ula-Mugla | 13 April 2017 16:22:16 | 37.1397 | 28.684 | 5 | 15 | 15 |
6 | Saruhanli-Manisa | 28 May 2017 11:04:57 | 38.7182 | 27.7715 | 5 | 23 | 23 |
7 | Milas-Mugla | 14 August 2017 02:43:47 | 37.1881 | 27.6585 | 5 | 13 | 13 |
8 | Sehitkamil-Gaziantep | 12 November 2017 18:19:58 | 37.1918 | 37.52 | 7.1 | 77 | 59 |
9 | Koycegiz-Mugla | 24 November 2017 21:49:14 | 37.0935 | 28.5999 | 6 | 29 | 29 |
10 | Sivrice-Elazig | 4 April 2019 17:31:11 | 38.3728 | 39.1712 | 5 | 60 | 58 |
11 | Dazkiri-Afyonkarahisar | 8 August 2019 11:25:30 | 37.9115 | 29.675 | 5.7 | 303 | 294 |
12 | Cerkes-Cankiri | 14 September 2019 06:03:11 | 40.7705 | 32.9597 | 5 | 23 | 21 |
13 | Marmara Denizi (Orta) | 26 September 2019 10:59:25 | 40.8678 | 28.164 | 5.7 | 350 | 334 |
14 | Doganyol-Malatya | 27 December 2019 07:02:28 | 38.2564 | 38.9967 | 5 | 5 | 5 |
15 | Kirkagac-Manisa | 22 January 2020 19:22:15 | 39.0656 | 27.8261 | 6 | 1870 | 932 |
16 | Sivrice-Elazig | 24 January 2020 17:55:16 | 38.3367 | 39.2637 | 6.4 | 767 | 675 |
17 | Cihanbeyli-Konya | 24 January 2020 17:56:25 | 38.3956 | 32.7884 | 5.3 | 767 | 675 |
18 | Akhisar-Manisa | 4 February 2020 17:55:23 | 39.0006 | 27.8441 | 5 | 42 | 37 |
19 | Akhisar-Manisa | 18 February 2020 16:09:22 | 39.0377 | 27.7558 | 5.2 | 22 | 21 |
20 | Karliova-Bingol | 14 June 2020 14:24:27 | 39.3081 | 40.8209 | 5.9 | 25 | 25 |
21 | Karliova-Bingol | 15 June 2020 06:51:31 | 39.3971 | 40.7076 | 5.4 | 12 | 12 |
22 | Karayazi-Erzurum | 16 June 2020 01:34:54 | 39.7849 | 42.0531 | 5.4 | 12 | 12 |
23 | Dodecanese Islands | 30 October 2020 11:51:26 | 37.8875 | 26.834 | 6.7 | 58 | 44 |
24 | Puturge-Malatya | 27 November 2020 08:27:55 | 38.2202 | 38.6871 | 5.2 | 4 | 3 |
25 | Kurtalan-Siirt | 3 December 2020 05:45:19 | 37.9463 | 41.6801 | 5.2 | 20 | 20 |
26 | Antalya Korfezi-AKDENIZ | 5 December 2020 12:44:40 | 35.9971 | 31.8088 | 5.5 | 19 | 19 |
27 | Sivrice-Elazig | 27 December 2020 06:37:34 | 38.4714 | 39.2593 | 5.3 | 28 | 28 |
28 | Yayladere-Bingol | 25 June 2021 18:28:38 | 39.2055 | 40.2233 | 5.4 | 14 | 14 |
Total: | 4670 | 3467 |
Number of Data Producers | Number of Earthquakes | Total | |||
---|---|---|---|---|---|
1 | 2 | >2 and <=8 | |||
Number of tweets | 1 | 1011 | 99 | 514 | 1624 |
>1 and <5 | 179 | 33 | 81 | 293 | |
>=5 and <10 | 126 | 6 | 9 | 141 | |
>=10 and <=18 | 2 | 0 | 3 | 5 | |
Total: | 1318 | 138 | 607 | 2063 |
Number of Trajectory Points | Number of Trajectory (for Each Event Tweet) |
---|---|
1 | 317 |
2–6 | 540 |
6–24 | 768 |
25–76 | 804 |
77–1438 | 808 |
Total: | 3237 |
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 6.00 24.00 57.35 76.00 1438.00 |
Relevancy Label | Explanation | Examples (Translated from Turkish) | Tweet Count | Distinct Tweet Count |
---|---|---|---|---|
1 | Directly relevant: tweets directly from the field based on the experiences of tweet producers | Felt the earthquake. I am ok but we are not! #earthquake Oh my God, don’t let those horror moments happen again. | 170 | 124 |
2 | Indirectly relevant: tweets wishing good recovery or spreading general information about earthquakes | We wish God’s mercy on those who lost their lives in the earthquake that took place in Izmir, and a speedy recovery to the injured. May Allah help those who are under the rubble. Images of the building shaken like a cradle by the 5.8 magnitude earthquake. | 1242 | 655 |
3 | Irrelevant: mixed contents not directly meaning something | Earthquake scientist chicken feed #earthquakeVultures freight elevator legal person inflation Necromancer #KnowntheEarthquake be able to smack the skull ultimate enlightenment perfect | 3258 | 2458 |
Total: | 4670 | 3237 |
Model | R Libraries | Method | Tuned Parameters/Settings | Cross-Validation |
---|---|---|---|---|
DT | caret, rpart | rpart | cp = {0.001, 0.011, 0.021, 0.031, 0.041, 0.051}, SMOTE | 5-fold |
NB | caret, klaR | nb | Default settings, SMOTE | 5-fold |
SVM | caret, kernlab | svmRadial | C = {0.25, 0.5, 1}, sigma = {0.01, 0.05, 0.1}, SMOTE | 5-fold |
k-NN | caret | knn | k = {3, 5, 7, 9}, SMOTE | 5-fold |
RF | caret, randomForest | rf | mtry = {2, 4, 6}, ntree = 100, SMOTE | 5-fold |
DL | h2o, caret | h2o.deeplearning | Hidden layers: {128, 64, 32, 16}, epochs = 200, early stopping (log-loss), balanced classes | 5-fold |
Model | DT | NB | SVM | k-NN | RF | DL | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | 0.85 | 0.77 | 0.86 | 0.87 | 0.89 | 0.85 | |||||||||||||
95% CI | (0.82, 0.87) | (0.74, 0.81) | (0.82, 0.88) | (0.84, 0.90) | (0.86, 0.90) | (0.82, 0.87) | |||||||||||||
NIR * | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | |||||||||||||
p-value [Acc > NIR] | 4.14 × 10−8 | 0.22 | 0.00 | 2.12 × 10−12 | 5.59 × 10−16 | 7.25 × 10−8 | |||||||||||||
Kappa | 0.63 | 0.19 | 0.66 | 0.6807 | 0.7153 | 0.6215 | |||||||||||||
Mcnemar’s Test p-value | 0.0006 | <2 × 10−16 | 3.583 × 10−10 | 0.0007 | 0.0051 | 0.0025 | |||||||||||||
Classes (Cl) | Cl:1 | Cl:2 | Cl:3 | Cl:1 | Cl:2 | Cl:3 | Cl:1 | Cl:2 | Cl:3 | Cl:1 | Cl:2 | Cl:3 | Cl:1 | Cl:2 | Cl:3 | Cl:1 | Cl:2 | Cl:3 | |
Sensitivity | 0.42 | 0.72 | 0.90 | 0.29 | 0.05 | 0.99 | 0.58 | 0.84 | 0.87 | 0.63 | 0.76 | 0.91 | 0.46 | 0.82 | 0.92 | 0.46 | 0.73 | 0.89 | |
Specificity | 0.94 | 0.93 | 0.86 | 0.97 | 1.00 | 0.21 | 0.92 | 0.92 | 0.94 | 0.95 | 0.94 | 0.88 | 0.96 | 0.94 | 0.90 | 0.94 | 0.92 | 0.84 | |
Pos Pred Value | 0.20 | 0.71 | 0.95 | 0.25 | 0.75 | 0.80 | 0.23 | 0.73 | 0.98 | 0.32 | 0.75 | 0.96 | 0.29 | 0.77 | 0.97 | 0.23 | 0.71 | 0.95 | |
Neg Pred Value | 0.98 | 0.93 | 0.74 | 0.97 | 0.80 | 0.89 | 0.98 | 0.96 | 0.69 | 0.98 | 0.94 | 0.76 | 0.98 | 0.95 | 0.79 | 0.98 | 0.93 | 0.71 | |
Prevalence | 0.04 | 0.20 | 0.76 | 0.04 | 0.20 | 0.76 | 0.04 | 0.20 | 0.76 | 0.04 | 0.20 | 0.76 | 0.04 | 0.20 | 0.76 | 0.04 | 0.2 | 0.76 | |
Detection Rate | 0.02 | 0.15 | 0.69 | 0.01 | 0.01 | 0.75 | 0.02 | 0.17 | 0.66 | 0.02 | 0.15 | 0.69 | 0.02 | 0.17 | 0.70 | 0.02 | 0.15 | 0.68 | |
Detection Prevalence | 0.08 | 0.20 | 0.72 | 0.04 | 0.01 | 0.94 | 0.09 | 0.23 | 0.67 | 0.07 | 0.21 | 0.72 | 0.06 | 0.22 | 0.73 | 0.07 | 0.21 | 0.72 | |
Balanced Accuracy | 0.68 | 0.82 | 0.88 | 0.63 | 0.52 | 0.60 | 0.75 | 0.88 | 0.90 | 0.79 | 0.85 | 0.89 | 0.71 | 0.88 | 0.91 | 0.70 | 0.83 | 0.87 | |
F1 Score | 0.27 | 0.71 | 0.93 | 0.27 | 0.09 | 0.88 | 0.33 | 0.78 | 0.92 | 0.42 | 0.76 | 0.93 | 0.35 | 0.79 | 0.95 | 0.31 | 0.72 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulnerman, A.G. Do Spatial Trajectories of Social Media Users Imply the Credibility of the Users’ Tweets During Earthquake Crisis Management? Appl. Sci. 2025, 15, 6897. https://doi.org/10.3390/app15126897
Gulnerman AG. Do Spatial Trajectories of Social Media Users Imply the Credibility of the Users’ Tweets During Earthquake Crisis Management? Applied Sciences. 2025; 15(12):6897. https://doi.org/10.3390/app15126897
Chicago/Turabian StyleGulnerman, Ayse Giz. 2025. "Do Spatial Trajectories of Social Media Users Imply the Credibility of the Users’ Tweets During Earthquake Crisis Management?" Applied Sciences 15, no. 12: 6897. https://doi.org/10.3390/app15126897
APA StyleGulnerman, A. G. (2025). Do Spatial Trajectories of Social Media Users Imply the Credibility of the Users’ Tweets During Earthquake Crisis Management? Applied Sciences, 15(12), 6897. https://doi.org/10.3390/app15126897