Prediction of Horizontal in Situ Stress in Shale Reservoirs Based on Machine Learning Models
Abstract
1. Introduction
2. Experimental Datasets and Methods
2.1. Experimental Datasets
2.2. Experimental Methodology
2.2.1. Logging Interpretation Method
2.2.2. XGBoost
2.2.3. RF-RFE Algorithm
2.2.4. Bayesian Optimization
2.2.5. Baseline Models
2.2.6. Software Statement
3. Machine Learning Model
3.1. Data Preprocessing
3.2. Model Evaluation Metrics
3.3. Analysis of Dominating Factors
4. Results and Discussion
4.1. Comparison of Different Models’ Prediction Results
4.2. Comparison of Different Models Evaluation Metrics
4.3. Field Application
5. Conclusions
- 1.
- RFECV identified 9 key features from 30 initial well-logging curves, eliminating 21 weakly related ones to reduce redundancy. This enhances the model’s interpretability and generalization in heterogeneous geological conditions. Bayesian optimization effectively adjusts hyperparameters like tree depth and learning rate, improving model convergence for a globally optimal configuration. Compared to grid and random search, this method reduces computational cost and ensures robustness across datasets.
- 2.
- The XGBoost model outperforms baseline models (SVM and RF) in SHmax and SHmin prediction. It achieved the highest R2 (0.978 for SHmax, 0.959 for SHmin) and lowest error indicators (MAE, MSE, RMSE). This highlights its ability to capture the nonlinear relationship between logging parameters and stress distribution. However, the model’s applicability to other shale formations has not been adequately researched, which may introduce certain limitations. Future studies can validate the model’s performance across different shale formations to enhance its generalizability and reliability in varied geological settings.
- 3.
- The predicted SHmax and SHmin data reveal the reservoir’s stress distribution, aiding in optimizing fracture propagation during hydraulic fracturing. In areas with low stress differences, adjusting fracturing parameters can enhance fracture uniformity. In areas with high stress differences, optimizing proppant carrying capacity ensures fracture conductivity.
- 4.
- The prediction results are useful for geomechanical modeling and wellbore stability design. In low-stress areas, high-density mud prevents wellbore collapse; in high—stress areas, optimizing casing strength improves well integrity. Field data like microseismic monitoring and stress logging can iteratively refine the prediction model, enhancing its applicability throughout shale gas development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.X.; Lei, Z.D.; Dong, W.H.; Wang, H.Y.; Zheng, X.F. Progress, Challenges, and Prospects of Unconventional Oil and Gas Development in China. China Pet. Explor. 2022, 27, 1–11. [Google Scholar]
- Li, L.G. Review and Prospects of China’s Natural Gas Industry Development. Nat. Gas Ind. 2021, 41, 1–11. [Google Scholar]
- Jia, A.L.; He, D.B.; Wei, Y.S.; Li, Y. Forecast of China’s Natural Gas Development Trend in the Next 15 Years. Nat. Gas Geosci. 2021, 32, 17–27. [Google Scholar]
- Ma, X.H. Theory and Practice of “Limit Recovery” Development of Unconventional Natural Gas. Pet. Explor. Dev. 2021, 48, 326–336. [Google Scholar] [CrossRef]
- Hu, W.R.; Li, H.T.; Wang, J.R.; Pan, Z.Y.; Dang, L.R.; Jing, X.S.; Bao, J.W.; Huang, M.; Yu, G.; Zhu, H.; et al. Strategy, Implementation Path and Safeguard Measures of “Large Gas Daqing” in Southwest China. Nat. Gas Ind. 2023, 43, 146–151. [Google Scholar]
- Ma, X.H.; Zhang, X.W.; Xiong, W.; Liu, Y.Y.; Gao, J.L.; Yu, R.Z.; Sun, Y.P.; Wu, J.; Kang, L.X.; Zhao, S.P. Development Prospects and Challenges of Shale Gas in China. Bull. Pet. Sci. Technol. 2023, 8, 491–501. [Google Scholar]
- Ni, H.K.; Dang, W.; Zhang, K.; Su, H.K.; Ding, J.H.; Li, D.H.; Liu, X.W.; Li, P.; Li, P.; Yang, S.Y.; et al. 20 Years of Shale Gas Research and Development in China: Review and Prospect. Nat. Gas Ind. 2024, 44, 20–52. [Google Scholar]
- Zou, C.N.; Dong, D.Z.; Xiong, W.; Fu, G.Y.; Zhao, Q.; Liu, W.; Kong, W.L.; Zhang, Q.; Cai, G.Y.; Wang, Y.M.; et al. Progress, Challenges and Countermeasures of Shale Gas Exploration in New Zones, New Strata and New Types in China. Oil Gas Geol. 2024, 45, 309–326. [Google Scholar]
- Li, M.; Liu, Y.L.; Feng, D.J.; Shen, B.J.; Du, W.; Wang, P.W. Potential of Marine Shale Gas Resources and Future Exploration Direction in China. Exp. Pet. Geol. 2023, 45, 1097–1108. [Google Scholar]
- Yang, Z.Z.; Yuan, J.F.; Zhang, J.Q.; Li, X.G.; Zhu, J.Y.; He, J.K. Research Progress and Understanding of Fracture Networks in horizontal Wells of Marine Shale in the Sichuan Basin. Pet. Reserv. Eval. Dev. 2024, 14, 600–609. [Google Scholar]
- Xusheng, G.U.O.; Ruyue, W.A.N.G.; Baojian, S.H.E.N.; Guanping, W.A.N.G.; Chengxiang, W.A.N.; Qianru, W.A.N.G. Geological Characteristics, Resource Potential and Development Direction of Shale Gas in China. Pet. Explor. Dev. 2025, 52, 15–28. [Google Scholar]
- Tang, H.Y.; Luo, S.G.; Liang, H.P.; Zeng, B.; Zhang, L.H.; Zhao, Y.L.; Song, Y. Numerical Simulation of Integrated Fracturing-Production for Shale Gas Wells Considering Gas-Water Two-Phase Flow. Pet. Explor. Dev. 2024, 51, 597–607. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ju, W.; Xiong, W.; Guo, W.; Ning, W.K.; Yu, G.D.; Liang, X.B.; Li, Y.K. Present-Day In-Situ Stress Characteristics and Shale Gas Development in the Luzhou Block, Southern Sichuan. Sci. Technol. Eng. 2024, 24, 3200–3206. [Google Scholar]
- Han, L.L.; Li, X.Z.; Liu, Z.Y.; Duan, G.F.; Wan, Y.J.; Guo, X.L.; Guo, W.; Cui, Y. Main Controlling Factors and Countermeasures for Casing Deformation in Deep Shale Gas Wells in Southern Sichuan. Pet. Explor. Dev. 2023, 50, 853–861. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Song, Y.J.; Tang, X.H. Progress in Research on 4D In-Situ Stress Evolution in Shale Gas Reservoirs and Complex Fracture Propagation in Infilling Wells. Bull. Pet. Sci. Technol. 2021, 6, 396–416. [Google Scholar]
- Shi, X.W.; Wang, C.; Zhang, D.J.; Du, B.Y.; Gao, J.H.; Dong, X.H.; Wu, T.; Zhang, J.X. Seismic Prediction Technology for In-Situ Stress in Deep Shale Gas Reservoirs of the Wufeng–Longmaxi Formation, Northern Luzhou Area, Sichuan Basin. Nat. Gas Geosci. 2024, 35, 2040–2052. [Google Scholar]
- Du, B.Y.; Gao, J.H.; Zhang, G.Z.; Dong, X.H.; Guo, W.; Zhang, J.D. Seismic Prediction Method and Application of In-Situ Stress in Shale Reservoir Based on Fracture Density Inversion. Oil Geophys. Prospect. 2024, 59, 279–289. [Google Scholar]
- Chen, X.H. Evaluation and Engineering Application of Present-Day In-Situ Stress Field of the Longmaxi Shale Formation in the Dingshan–Dongxi Area. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2023. [Google Scholar]
- He, C. Study on Prediction of In-Situ Stress and Compressibility of Shale Reservoir Based on VTI Medium. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2023. [Google Scholar]
- Cheng, D.J.; Sun, B.D.; Cheng, Z.G.; Wan, J.B.; Wang, H.; Zhang, Y.H. Current Status and Prospect of In-Situ Stress Evaluation Based on Logging Data. Well Logging Technol. 2014, 38, 379–383. [Google Scholar]
- Yan, J.F.; Li, S.L.; Wei, Z.D.; Wu, Z.B.; Chen, J.Y. Lithofacies Prediction Method for Shale Based on XGBoost Algorithm. J. Palaeogeogr. 2025, 27, 763–776. [Google Scholar]
- Ni, W.J.; Li, Q.; Guo, W.H.; Feng, T.; Li, X.M.; Zhou, T.T. Prediction of Shear Wave Velocity in Shale Reservoirs Based on Support Vector Machine. J. Xi’an Shiyou Univ. (Nat. Sci. Ed.) 2017, 32, 46–49+54. [Google Scholar]
- Duan, Y.X.; Wang, Y.F.; Sun, Q.F. Application of Selective Ensemble Learning Model in Lithology-Porosity Prediction. Sci. Technol. Eng. 2020, 20, 1001–1008. [Google Scholar]
- Liu, T.; Tian, R.F.; Zhang, W. Prediction of Logging Shear Wave Velocity Based on Deep Neural Network Optimized by Genetic Algorithm. Geophys. Geochem. Explor. Comput. Technol. 2023, 45, 289–298. [Google Scholar]
- Luo, F.Q.; Liu, J.T.; Chen, X.P.; Li, S.A.; Yao, X.Z.; Chen, D. Intelligent Prediction of Formation Pore Pressure in the No. 5 Fault Zone of Shunbei Oilfield Based on BP and LSTM Neural Network. Oil Drill. Prod. Technol. 2022, 44, 506–514. [Google Scholar]
- Ma, T.S.; Xiang, G.F.; Shi, Y.F.; Gui, J.C.; Zhang, D.Y. Horizontal Stress Prediction Method Based on Bidirectional Long Short-Term Memory Neural Network. Bull. Pet. Sci. Technol. 2022, 7, 487–504. [Google Scholar]
- Ma, T.; Xiang, G.; Shi, Y.; Lui, Y. Horizontal In-Situ Stresses Prediction Using a CNN-BiLSTM-Attention Hybrid Neural Network. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 152. [Google Scholar] [CrossRef]
- Lin, H.; Kang, W.; Oh, J.; Canbulat, I. Estimation of In-Situ Maximum Horizontal Principal Stress Magnitudes from Borehole Breakout Data Using Machine Learning. Int. J. Rock Mech. Min. Sci. 2020, 126, 104199. [Google Scholar] [CrossRef]
- Zhao, H.; Yin, S. Geomechanical Parameters Identification by Particle Swarm Optimization and Support Vector Machine. Appl. Math. Model. 2009, 33, 3997–4012. [Google Scholar] [CrossRef]
- Ibrahim, A.F.; Gowida, A.; Ali, A.; Elkatatny, S. Real-Time Prediction of In-Situ Stresses While Drilling Using Surface Drilling Parameters from Gas Reservoir. J. Nat. Gas Sci. Eng. 2022, 97, 104368. [Google Scholar] [CrossRef]
- Chang, Z.; Catani, F.; Huang, F.; Liu, G.; Meena, S.R.; Huang, J.; Zhou, C. Landslide Susceptibility Prediction Using Slope Unit-Based Machine Learning Models Considering the Heterogeneity of Conditioning Factors. J. Rock Mech. Geotech. Eng. 2023, 15, 1127–1143. [Google Scholar] [CrossRef]
- Han, X.; Yi, X.; Zhou, C.; Che, X.; Hou, L.; Huang, X.; Wang, Y.; Zeng, J. Study on Rock Mechanics Parameters and In-Situ Stress Profile Construction and Correction Method Based on Well Log Interpretation. Chem. Technol. Fuels Oils 2021, 57, 518–528. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Li, K.; Liu, H.; Kang, Y.; Wu, Y.; Lv, W. Unilateral Alignment: An Interpretable Machine Learning Method for Geophysical Logs Calibration. Artif. Intell. Geosci. 2021, 2, 192–201. [Google Scholar] [CrossRef]
- Saeed, A.; Hamidzadeh, R.M.; Ahsan, L. New Interpretation Approach of Well Logging Data for Evaluation of Kern Aquifer in South California. J. Appl. Geophys. 2023, 215, 105138. [Google Scholar]
- Chen, H. Study on Interpretation Method of Remaining Oil Saturation Based on PSSL Logging. Acad. J. Environ. Earth Sci. 2023, 5, 55–62. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Hu, W.; Liang, J.; Jin, Y.; Wu, F.; Wang, X.; Chen, E. Online Evaluation Method for Low Frequency Oscillation Stability in a Power System Based on Improved XGBoost. Energies 2018, 11, 3238. [Google Scholar] [CrossRef]
- Díaz-Uriarte, R.; Alvarez de Andrés, S. Using Recursive Feature Elimination in Random Forest to Account for Correlated Variables in High Dimensional Data. BMC Genet. 2018, 19, 65. [Google Scholar]
- Lima, F.C.; Lobo, G.F.; Pelikan, M.; Goldberg, D.E. Model Accuracy in the Bayesian Optimization Algorithm. Soft Comput. 2011, 15, 1351–1371. [Google Scholar] [CrossRef]
- Monson, K.C.; Seppi, D.K. Bayesian Optimization Models for Particle Swarms. In Proceedings of the 7th Annual Conference on GENETIC and Evolutionary Computation, Washington, DC, USA, 25 June 2005; pp. 193–200. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Singh, U.B.; Nanhay, S. Analysis of Recent Advancements in Support Vector Machine. Concurr. Comput. Pract. Exp. 2022, 34, e7270. [Google Scholar]
Features | Mutual Information Value | Features | Mutual Information Value | Features | Mutual Information Value |
---|---|---|---|---|---|
DEPTH | 1.816 | TVD | 1.234 | SV | 1.216 |
PP | 1.195 | BDYN | 1.189 | AC | 0.987 |
YMOD | 0.879 | TEMP | 0.862 | DTC | 0.862 |
DTS | 0.721 | PF | 0.687 | GDYN | 0.623 |
DTST | 0.617 | CAL | 0.584 | VPVS | 0.563 |
PM1 | 0.561 | POIS | 0.558 | BRIT | 0.475 |
CNL | 0.428 | GR | 0.337 | BP | 0.283 |
RT | 0.255 | TH | 0.248 | URAN | 0.210 |
PM2 | 0.209 | DEN | 0.208 | RXO | 0.200 |
KTH | 0.188 | PE | 0.172 | K | 0.114 |
Target Variables | Parameters | XGBoost | SVM | RF |
---|---|---|---|---|
SHmax | MAE | 0.250 | 0.345 | 0.621 |
MSE | 0.125 | 0.242 | 0.763 | |
RMSE | 0.353 | 0.492 | 0.874 | |
R2 | 0.978 | 0.958 | 0.866 | |
SHmin | MAE | 0.304 | 0.437 | 0.509 |
MSE | 0.181 | 0.370 | 0.511 | |
RMSE | 0.426 | 0.608 | 0.715 | |
R2 | 0.959 | 0.917 | 0.885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Li, X.; Guo, W.; Zhan, H.; Yang, X.; Liu, Y.; Pei, X.; He, W.; Wang, L.; Lin, Y. Prediction of Horizontal in Situ Stress in Shale Reservoirs Based on Machine Learning Models. Appl. Sci. 2025, 15, 6868. https://doi.org/10.3390/app15126868
Yu W, Li X, Guo W, Zhan H, Yang X, Liu Y, Pei X, He W, Wang L, Lin Y. Prediction of Horizontal in Situ Stress in Shale Reservoirs Based on Machine Learning Models. Applied Sciences. 2025; 15(12):6868. https://doi.org/10.3390/app15126868
Chicago/Turabian StyleYu, Wenxuan, Xizhe Li, Wei Guo, Hongming Zhan, Xuefeng Yang, Yongyang Liu, Xiangyang Pei, Weikang He, Longyi Wang, and Yaoqiang Lin. 2025. "Prediction of Horizontal in Situ Stress in Shale Reservoirs Based on Machine Learning Models" Applied Sciences 15, no. 12: 6868. https://doi.org/10.3390/app15126868
APA StyleYu, W., Li, X., Guo, W., Zhan, H., Yang, X., Liu, Y., Pei, X., He, W., Wang, L., & Lin, Y. (2025). Prediction of Horizontal in Situ Stress in Shale Reservoirs Based on Machine Learning Models. Applied Sciences, 15(12), 6868. https://doi.org/10.3390/app15126868