Computed Tomography-Driven Design and Fused Filament Fabrication of Graded Density Bone Scaffolds
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Computed Tomography and Hounsfield Units
1.2. Design Methods of Scaffolds for AM
1.3. Previous Works
1.4. Aim
2. Materials and Methods
2.1. CAD
2.1.1. Volumetric Models
2.1.2. Surface Model
2.2. CAM
2.2.1. Lattice Structure Design
2.2.2. Computer Numerical Control (CNC) Programming Language
2.3. CAD–CAM Integration
2.3.1. Alignment
2.3.2. Conversion from HU Values to Relative Density Scalar Field
2.3.3. G-Code Editing
for each line in the G-code file: if available, extract X, Y, Z, E if line is infill: calculate interpolated value ρe,I at X, Y, Z if ρe,I < ρemin: ρe,I = ρemin compute new value for E (Equation (6)) substitute new value for E in G-code line in E position |
3. Test Case and Discussion
3.1. Preliminary Process Calibration
3.2. Femur Segment
- compensate for deposition delay, through a model that considers the variations in pressure due to flow rate changes;
- enlarge the infill database to other TPMS structures or custom patterns, such as patterns conforming to the 3D scalar field or the surface boundaries;
- modify other process parameters such as the temperature and material ratio;
- expand the method to different nozzle diameters such as 0.5 and 0.8 mm;
- mechanically and biologically characterize the 3D components.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | Additive Manufacturing |
CAD | Computer-Aided Design |
CAE | Computer-Aided Engineering |
CAM | Computer-Aided Manufacturing |
CT | Computed Tomography |
DICOM | Digital Imaging and Communication in Medicine |
DLP | Digital Light Processing |
FE | Finite Element |
FFF | Fused Filament Fabrication |
GAG | Glycosaminoglycans |
HA | Hydroxyapatite |
HU | Hounsfield Unit |
MEX | Material Extrusion |
MRI | Magnetic Resonance Imaging |
nHA | Nano-Hydroxyapatite |
PCL | Polycaprolactone |
PET | Positron Emission Tomography |
PGA | Polyglycolic Acid |
PLA | Polylactic Acid |
PLLA | Poly-l-Lactic Acid |
ROI | Region of Interest |
RVE | Representative Volume Element |
SLM | Selective Laser Melting |
SLS | Selective Laser Sintering |
TPMS | Triply Periodic Minimal Surface |
TCP | Tricalcium Phosphate |
VPP | Vat Photopolimerization |
References
- Eltom, A.; Zhong, G.; Muhammad, A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv. Mater. Sci. Eng. 2019, 2019, 3429527. [Google Scholar] [CrossRef]
- Kumar, A.; Jacob, A. Techniques in scaffold fabrication process for tissue engineering applications: A review. J. Appl. Biol. Biotechnol. 2022, 10, 163–176. [Google Scholar] [CrossRef]
- Varghese, M.G.; Thomas, A.; Rupesh, S.; Sameer, K.M.; Joseph, D.; Thomas, N.G. Fabrication Techniques for Scaffolds Applied in Regenerative Medicine. In Novel Biomaterials for Tissue Engineering; Vizureanu, P., Baltatu, M.S., Eds.; IntectOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Subramaniyan, M.; Eswaran, P.; Appusamy, A.; Srimannarayana Raju, P.S.; Rahini, V.; Madhumitha, T.R.; Thisha, R. A survey on applications of additive manufacturing techniques in tissue engineering. Mater. Today Proc. 2021, 45, 8036–8040. [Google Scholar] [CrossRef]
- Ożóg, P.; Elsayed, H.; Grigolato, L.; Savio, G.; Kraxner, J.; Galusek, D. Bernardo E: Engineering of silicone-based blends for the masked stereolithography of biosilicate/carbon composite scaffolds. J. Eur. Ceram. Soc. 2022, 42, 6192–6198. [Google Scholar] [CrossRef]
- Elsayed, H.; Secco, M.; Zorzi, F.; Schuhladen, K.; Detsch, R.; Boccaccini, A.R.; Bernardo, E. Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution. Materials 2019, 12, 3970. [Google Scholar] [CrossRef]
- Zafar, M.J.; Zhu, D.; Zhang, Z. 3D Printing of Bioceramics for Bone Tissue Engineering. Materials 2019, 12, 3361. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Echeverry-Rendón, M. 3D-printed biodegradable polymer scaffolds for tissue engineering: An overview, current stage and future perspectives. Next Mater. 2025, 8, 100647. [Google Scholar] [CrossRef]
- NEMA. DICOM PS3.1 2021e—Introduction and Overview. Available online: https://dicom.nema.org/medical/Dicom/2021e/output/chtml/part01/PS3.1.html (accessed on 10 December 2024).
- ISO 12052:2017; Health Informatics—Digital Imaging and Communication in Medicine (DICOM) Including Workflow and Data Management (EN). ISO: Geneva, Switzerland, 2017.
- DenOtter, T.D.; Schubert, J. Hounsfield Unit; StatPearls: Petersburg, FL, USA, 2025. [Google Scholar]
- Lamba, R.; McGahan, J.P.; Corwin, M.T.; Li, C.-S.; Tran, T.; Seibert, J.A.; Boone, J.M. CT Hounsfield Numbers of Soft Tissues on Unenhanced Abdominal CT Scans: Variability Between Two Different Manufacturers’ MDCT Scanners. Am. J. Roentgenol. 2014, 203, 1013–1020. [Google Scholar] [CrossRef]
- Hurrell, M.A.; Butler, A.P.H.; Cook, N.J.; Butler, P.H.; Ronaldson, J.P.; Zainon, R. Spectral Hounsfield units: A new radiological concept. Eur. Radiol. 2012, 22, 1008–1013. [Google Scholar] [CrossRef]
- Bazalova, M.; Carrier, J.-F.; Beaulieu, L.; Verhaegen, F. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Phys. Med. Biol. 2008, 53, 2439–2456. [Google Scholar] [CrossRef]
- Amini, I.; Akhlaghi, P. Evaluation of CT calibration curves from stoichiometric and tissue substitute methods according to tissue characteristics. Radioprotection 2019, 54, 117–123. [Google Scholar] [CrossRef]
- Mukasheva, F.; Adilova, L.; Dyussenbinov, A.; Yernaimanova, B.; Abilev, M.; Akilbekova, D. Optimizing scaffold pore size for tissue engineering: Insights across various tissue types. Front. Bioeng. Biotechnol. 2024, 12, 1444986. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Okamoto, M. Structure and properties of 3D resorbable scaffolds based on poly(L-lactide) via salt-leaching combined with phase separation. Int. J. Hydrol. 2023, 7, 73–76. [Google Scholar] [CrossRef]
- Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [Google Scholar] [CrossRef]
- Veloso, F.; Gomes-Fonseca, J.; Morais, P.; Correia-Pinto, J.; Pinho, A.C.M.; Vilaça, J.L. Overview of Methods and Software for the Design of Functionally Graded Lattice Structures. Adv. Eng. Mater. 2022, 24, 2200483. [Google Scholar] [CrossRef]
- Savio, G.; Rosso, S.; Meneghello, R.; Concheri, G. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review. Appl. Bionics Biomech. 2018, 2018, 1654782. [Google Scholar] [CrossRef]
- Dasan, A.; Elsayed, H.; Kraxner, J.; Galusek, D. Bernardo E: Hierarchically porous 3D-printed akermanite scaffolds from silicones and engineered fillers. J. Eur. Ceram. Soc. 2019, 39, 4445–4449. [Google Scholar] [CrossRef]
- Leonardi, F.; Graziosi, S.; Casati, R.; Tamburrino, F.; Bordegoni, M. Additive Manufacturing of Heterogeneous Lattice Structures: An Experimental Exploration. Proc. Des. Soc. Int. Conf. Eng. Des. 2019, 1, 669–678. [Google Scholar] [CrossRef]
- Savio, G.; Meneghello, R.; Concheri, G. Geometric modeling of lattice structures for additive manufacturing. Rapid Prototyp. J. 2018, 24, 351–360. [Google Scholar] [CrossRef]
- Barba, D.; Alabort, E.; Reed, R.C. Synthetic bone: Design by additive manufacturing. Acta Biomater. 2019, 97, 637–656. [Google Scholar] [CrossRef]
- Ataollahi, S. A review on additive manufacturing of lattice structures in tissue engineering. Bioprinting 2023, 35, e00304. [Google Scholar] [CrossRef]
- Bracaglia, L.G.; Smith, B.T.; Watson, E.; Arumugasaamy, N.; Mikos, A.G.; Fisher, J.P. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater. 2017, 56, 3–13. [Google Scholar] [CrossRef]
- Van Bael, S.; Kerckhofs, G.; Moesen, M.; Pyka, G.; Schrooten, J.; Kruth, J.P. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng. A 2011, 528, 7423–7431. [Google Scholar] [CrossRef]
- Van Bael, S.; Chai, Y.C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; Kruth, J.-P.; Schrooten, J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012, 8, 2824–2834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; Fang, G.; Leeflang, S.; Zadpoor, A.A.; Zhou, J. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater. 2019, 84, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Warnke, P.H.; Douglas, T.; Wollny, P.; Sherry, E.; Steiner, M.; Galonska, S.; Becker, S.T.; Springer, I.N.; Wiltfang, J.; Sivananthan, S. Rapid Prototyping: Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering. Tissue Eng. Part C Methods 2009, 15, 115–124. [Google Scholar] [CrossRef]
- Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C 2016, 59, 690–701. [Google Scholar] [CrossRef]
- Fukuda, A.; Takemoto, M.; Saito, T.; Fujibayashi, S.; Neo, M.; Pattanayak, D.K.; Matsushita, T.; Sasaki, K.; Nishida, N.; Kokubo, T.; et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater. 2011, 7, 2327–2336. [Google Scholar] [CrossRef]
- Guo, W.; Li, P.; Pang, Y.; Wang, E.; Zhao, L.; Huang, Y.; Wang, S.; Liu, B.; You, H.; Long, Y. Biomimetic TPMS porous hydroxyapatite bone scaffolds doped with bioactive glass: Digital light processing additive manufacturing, microstructure and performance. Compos. Part A Appl. Sci. Manuf. 2025, 193, 108870. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Song, P.; Pei, X.; Sun, H.; Wu, L.; Zhou, C.; Wang, K.; Fan, Y.; Zhang, X. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations. Mater. Des. 2021, 201, 109490. [Google Scholar] [CrossRef]
- Okkalidis, N. A novel 3D printing method for accurate anatomy replication in patient-specific phantoms. Med. Phys. 2018, 45, 4600–4606. [Google Scholar] [CrossRef] [PubMed]
- Yau, H.-T.; Chen, Q.-F.; Huang, H.-Y.; Vu-Dinh, H. From computed tomography to 3D printed heterogeneous scaffolds: A novel approach to simulating bone characteristics using octree adaptive subdivision. Mater. Des. 2024, 245, 113277. [Google Scholar] [CrossRef]
- Ranellucci, A. Slic3r. Available online: https://slic3r.org/ (accessed on 14 January 2020).
- Sedničková, M.; Pekařová, S.; Kucharczyk, P.; Bočkaj, J.; Janigová, I.; Kleinová, A.; Jochec-Mošková, D.; Omaníková, L.; Perďochová, D.; Koutný, M.; et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost. Int. J. Biol. Macromol. 2018, 113, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Annex, A. ID Listings, Medium, Density, Mass, Minimum/Maximum Columns, Rows and Slices Occupied by Each Organ/Tissue (Containing Rectangular Prism), and Organ Centres of Mass. In Annals of the ICRP; Sage: Thousand Oaks, CA, USA, 2009; Volume 39, pp. 47–70. [CrossRef]
- Ma, X.; Figl, M.; Unger, E.; Buschmann, M.; Homolka, P. X-ray attenuation of bone, soft and adipose tissue in CT from 70 to 140 kV and comparison with 3D printable additive manufacturing materials. Sci. Rep. 2022, 12, 14580. [Google Scholar] [CrossRef]
- Bourke, P. Polygonising a Scalar Field. Available online: https://paulbourke.net/geometry/polygonise/ (accessed on 10 December 2024).
- Grigolato, L.; Rosso, S.; Meneghello, R.; Concheri, G.; Savio, G. Design and manufacturing of graded density components by material extrusion technologies. Addit. Manuf. 2022, 57, 102950. [Google Scholar] [CrossRef]
- Acierno, D.; Patti, A. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials 2023, 16, 7664. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.N.; Gold, S.A. A review of melt extrusion additive manufacturing processes:, II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 2015, 21, 250–261. [Google Scholar] [CrossRef]
- ISO: ISO 6983-1:2009; Automation Systems and Integration—Numerical Control of Machines—Program Format and Definitions of Address Words—Part 1: Data Format for Positioning, Line Motion and Contouring Control Systems. ISO: Geneva, Switzerland, 2009.
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Cooper, D.M.L.; Kawalilak, C.E.; Harrison, K.; Johnston, B.D.; Johnston, J.D. Cortical Bone Porosity: What Is It, Why Is It Important, and How Can We Detect It? Curr. Osteoporos. Rep. 2016, 14, 187–198. [Google Scholar] [CrossRef]
- Boughton, O.R.; Ma, S.; Cai, X.; Yan, L.; Peralta, L.; Laugier, P.; Marrow, J.; Giuliani, F.; Hansen, U.; Abel, R.L.; et al. Computed tomography porosity and spherical indentation for determining cortical bone millimetre-scale mechanical properties. Sci. Rep. 2019, 9, 7416. [Google Scholar] [CrossRef]
- Lim Fat, D.; Kennedy, J.; Galvin, R.; O’Brien, F.; Mc Grath, F.; Mullett, H. The Hounsfield value for cortical bone geometry in the proximal humerus—An in vitro study. Skelet. Radiol. 2012, 41, 557–568. [Google Scholar] [CrossRef]
- Porrelli, D.; Abrami, M.; Pelizzo, P.; Formentin, C.; Ratti, C.; Turco, G.; Grassi, M.; Canton, G.; Grassi, G. Murena L: Trabecular bone porosity and pore size distribution in osteoporotic patients—A low field nuclear magnetic resonance and microcomputed tomography investigation. J. Mech. Behav. Biomed. Mater. 2022, 125, 104933. [Google Scholar] [CrossRef]
- Bala, Y.; Zebaze, R.; Seeman, E. Role of cortical bone in bone fragility. Curr. Opin. Rheumatol. 2015, 27, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.-C.; Chen, J.; Zhong, W.-B.; Liu, Y.-H. Construct a Refined Monte Carlo Model for BNCT Dose Calculation and Assessment by Converting HU Value to Material Compositions for ROIs. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Bourke, P. Trilinear Interpolation. Available online: https://paulbourke.net/miscellaneous/interpolation/ (accessed on 10 December 2024).
- Knee and Bones 1.0.0. Available online: https://www.embodi3d.com/files/file/19722-knee-and-bones/ (accessed on 10 February 2022).
- 3mf Specifications. Available online: https://3mf.io/spec/ (accessed on 18 February 2025).
- Bellini, A.; Güçeri, S.; Bertoldi, M. Liquefier Dynamics in Fused Deposition. J. Manuf. Sci. Eng. 2004, 126, 237–246. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Ultimaker: Cura Infill Settings. Available online: https://support.ultimaker.com/s/article/1667411002588 (accessed on 13 December 2024).
- Prusa Research: Infill Patterns. Available online: https://help.prusa3d.com/article/infill-patterns_177130 (accessed on 13 December 2024).
- Tricard, T.; Tavernier, V.; Zanni, C.; Martínez, J.; Hugron, P.-A.; Neyret, F.; Lefebvre, S. Freely orientable microstructures for designing deformable 3D prints. ACM Trans. Graph. 2020, 39, 1–16. [Google Scholar] [CrossRef]
- Custom Infill Shape? Available online: https://www.reddit.com/r/Cura/comments/pvb427/custom_infill_shape/ (accessed on 20 May 2025).
- Savio, G.; Curtarello, A.; Rosso, S.; Meneghello, R. Concheri G: Homogenization driven design of lightweight structures for additive manufacturing. Int. J. Interact. Des. Manuf. 2019, 13, 263–273. [Google Scholar] [CrossRef]
- Freund, J.; Karakoç, A.; Sjölund, J. Computational homogenization of regular cellular material according to classical elasticity. Mech. Mater. 2014, 78, 56–65. [Google Scholar] [CrossRef]
- Dong, G.; Tang, Y.; Zhao, Y.F. A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing. J. Mech. Des. 2017, 139, 100906. [Google Scholar] [CrossRef]
- Gonabadi, H.; Chen, Y.; Bull, S. Investigation of the effects of volume fraction, aspect ratio and type of fibres on the mechanical properties of short fibre reinforced 3D printed composite materials. Prog. Addit. Manuf. 2025, 10, 261–277. [Google Scholar] [CrossRef]
- Ma, P.X. Scaffolds for tissue fabrication. Mater. Today 2004, 7, 30–40. [Google Scholar] [CrossRef]
- Stratton, S.; Shelke, N.B.; Hoshino, K.; Rudraiah, S.; Kumbar, S.G. Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 2016, 1, 93–108. [Google Scholar] [CrossRef] [PubMed]
Infill Type | ||
---|---|---|
Gyroid | 1.221 | 2 |
Rectilinear | 0.707 | 2 |
3D Honeycomb | 1.011 | 2 |
Direction | Data Structure Size n | Voxel Size vS |
---|---|---|
X | 182 | 0.976562 mm |
Y | 197 | 0.976562 mm |
Z | 107 | 3.27 mm |
Process Parameters | Values |
---|---|
Infill type | Gyroid |
47% | |
25 mm/s | |
0.4 mm | |
0.2 mm | |
Number of perimeters | 3 (1.2 mm) |
60/55 °C | |
220/215 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigolato, L.; Savio, G. Computed Tomography-Driven Design and Fused Filament Fabrication of Graded Density Bone Scaffolds. Appl. Sci. 2025, 15, 6434. https://doi.org/10.3390/app15126434
Grigolato L, Savio G. Computed Tomography-Driven Design and Fused Filament Fabrication of Graded Density Bone Scaffolds. Applied Sciences. 2025; 15(12):6434. https://doi.org/10.3390/app15126434
Chicago/Turabian StyleGrigolato, Luca, and Gianpaolo Savio. 2025. "Computed Tomography-Driven Design and Fused Filament Fabrication of Graded Density Bone Scaffolds" Applied Sciences 15, no. 12: 6434. https://doi.org/10.3390/app15126434
APA StyleGrigolato, L., & Savio, G. (2025). Computed Tomography-Driven Design and Fused Filament Fabrication of Graded Density Bone Scaffolds. Applied Sciences, 15(12), 6434. https://doi.org/10.3390/app15126434