An Improved Dual-Sorting NSGA-II Method for Optimal Radiation Shielding Design
Abstract
:1. Introduction
2. Improved NSGA-II Methodology with Dual-Sorting Approach
2.1. Workflow of the Dual-Sorting NSGA-II Method
- The initial parent population Pt+1 is generated using traditional R-based sorting;
- A modified parent population P’t+1 is then created using a new sorting method based on the fitness value O, which accounts for the concave characteristics of the Pareto front;
- This population undergoes crossover and mutation to produce the offspring population Qt+1;
- The combined parent population Pt+1 and offspring population Qt+1 form the next-generation population Ct+1.
2.2. O-Based Sorting Method
2.3. Implementation of the Genetic Algorithm
- Case 1: Each gene segment within a shield solution is evaluated independently to determine whether it should undergo mutation, with a mutation probability of 10%;
- Case 2: In each shield solution, only one gene segment is randomly selected for mutation.
3. Results and Discussion
3.1. Simplified Multilayer Flat Plate Shielding Problem
- Total effective dose at the detector position;
- Average density of the multilayer shielding plate, which serves as an indicator of material utilization efficiency.
3.2. Comparison of Convergence: Classical NSGA-II vs. Dual-Sorting NSGA-II
3.3. Optimization Efficiency Analysis
3.3.1. Population Superiority Metrics
3.3.2. Comparison of Optimization Efficiency Across Different Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Y.; Hu, H.; Pan, Z.; Sun, W.; Yan, M. Metaheuristic optimization in shielding design for neutrons and gamma rays reducing dose equivalent as much as possible. Ann. Nucl. Energy 2018, 120, 27–34. [Google Scholar] [CrossRef]
- Cai, Y.; Hu, H.; Lu, S.; Jia, Q. Optimization of radiation shielding material aiming at compactness, lightweight, and low activation for a vehicle-mounted accelerator-driven DT neutron source. Appl. Radiat. Isot. 2018, 135, 147–154. [Google Scholar] [CrossRef]
- Hu, G.; Hu, H.; Wang, S.; Han, H.; Otake, Y.; Pan, Z.; Taketani, A.; Ota, H.; Hashiguchi, T.; Yan, M. New shielding material development for compact accelerator-driven neutron source. AIP Adv. 2017, 7, 045213. [Google Scholar] [CrossRef]
- Yamaji, A.; Sako, K. Shielding design to obtain compact marine reactor. J. Nucl. Sci. Technol. 1994, 31, 510–520. [Google Scholar] [CrossRef]
- Bagheri, S.; Khalafi, H. SMR, 3D source term simulation for exact shielding design based on genetic algorithm. Ann. Nucl. Energy 2023, 191, 109915. [Google Scholar] [CrossRef]
- Liu, B.; Tan, Y.; Jing, F.; Hu, G.; Yan, M. Study on multi-objective optimization for nuclear reactor radiation shield design coupling genetic algorithm with paralleling discrete ordinate code. Front. Energy Res. 2022, 10, 935648. [Google Scholar] [CrossRef]
- Hu, G.; Hu, H.; Yang, Q.; Yu, B.; Sun, W. Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and γ-rays. Nucl. Eng. Technol. 2020, 52, 178–184. [Google Scholar] [CrossRef]
- Kleedtke, N.; Hua, M.; Pozzi, S. Genetic algorithm optimization of tin–copper graded shielding for improved plutonium safeguards measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 988, 164877. [Google Scholar] [CrossRef]
- Wilson, M. Optimization of the radiation shielding capabilities of bismuth-borate glasses using the genetic algorithm. Mater. Chem. Phys. 2019, 224, 238–245. [Google Scholar] [CrossRef]
- Liu, B.; Lv, H.; Li, L.; Chai, X.; Xu, H.; Tan, Y.; Xia, B.; Chen, C. Multi-objective optimization design of radiation shadow shield for space nuclear power with genetic algorithm. Front. Energy Res. 2022, 10, 800930. [Google Scholar] [CrossRef]
- Murata, T.; Ishibuchi, H. MOGA: Multi-objective genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation, Perth, WA, Australia, 29 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 1. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Díaz-Manríquez, A.; Toscano, G.; Barron-Zambrano, J.H.; Tello-Leal, E. A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms. Comput. Intell. Neurosci. 2016, 2016, 9420460. [Google Scholar] [CrossRef] [PubMed]
- Garagulova, A.K.; Gorbacheva, D.O.; Chirkov, D.V. Comparative analysis of MOGA and NSGA-II on the case study of optimization for the profile of the hydraulic turbine runner. Comput. Technol. 2018, 23, 21–36. [Google Scholar]
- Ma, H.; Zhang, Y.; Sun, S.; Liu, T.; Shan, Y. A comprehensive survey on NSGA-II for multi-objective optimization and applications. Artif. Intell. Rev. 2023, 56, 15217–15270. [Google Scholar] [CrossRef]
- Ma, B.; Song, L.; Yan, M.; Ikeda, Y.; Otake, Y.; Wang, S. Multiobjective optimization shielding design for compact accelerator-driven neutron sources by application of NSGA-II and MCNP. IEEE Trans. Nucl. Sci. 2020, 68, 110–117. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Xie, J.; Guo, Q.; Yu, T.; Zhao, P.; Liu, Z.; Xie, C. Multi-objective optimization strategies for radiation shielding design with genetic algorithm. Comput. Phys. Commun. 2021, 260, 107267. [Google Scholar] [CrossRef]
- Song, Y.; Mao, J.; Zhang, Z.; Huang, H.; Yuan, W.; Chen, Y. A novel multi-objective shielding optimization method: DNN-PCA-NSGA-Ⅱ. Ann. Nucl. Energy 2021, 161, 108461. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Su, X.; Tang, S.; Yan, M.; Pan, L. Study on multi-objective optimization method for radiation shield design of nuclear reactors. Nucl. Eng. Technol. 2024, 56, 520–525. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y. Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Li, G.; Zhang, B.; Deng, L.; Hu, Z.; Ma, Y. Development of Monte Carlo particle transport code JMCT. High Power Laser Part. Beams 2013, 25, 158–162. [Google Scholar]
Material | Lithium | Polyethylene | Boron | Aluminum | Iron | Lead |
---|---|---|---|---|---|---|
Density g/cm3 | 0.535 | 0.95 | 2.34 | 2.70 | 7.86 | 11.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Chen, Z.; Li, Y.; Jiang, W.; Yang, Y.; Huang, P.; Peng, T. An Improved Dual-Sorting NSGA-II Method for Optimal Radiation Shielding Design. Appl. Sci. 2025, 15, 5770. https://doi.org/10.3390/app15105770
Cheng S, Chen Z, Li Y, Jiang W, Yang Y, Huang P, Peng T. An Improved Dual-Sorting NSGA-II Method for Optimal Radiation Shielding Design. Applied Sciences. 2025; 15(10):5770. https://doi.org/10.3390/app15105770
Chicago/Turabian StyleCheng, Shenghan, Zhilin Chen, Yu Li, Wenxiang Jiang, Yang Yang, Po Huang, and Taiping Peng. 2025. "An Improved Dual-Sorting NSGA-II Method for Optimal Radiation Shielding Design" Applied Sciences 15, no. 10: 5770. https://doi.org/10.3390/app15105770
APA StyleCheng, S., Chen, Z., Li, Y., Jiang, W., Yang, Y., Huang, P., & Peng, T. (2025). An Improved Dual-Sorting NSGA-II Method for Optimal Radiation Shielding Design. Applied Sciences, 15(10), 5770. https://doi.org/10.3390/app15105770